論文の概要: Robust Locality-Aware Regression for Labeled Data Classification
- arxiv url: http://arxiv.org/abs/2006.08292v1
- Date: Mon, 15 Jun 2020 11:36:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 03:07:23.099229
- Title: Robust Locality-Aware Regression for Labeled Data Classification
- Title(参考訳): ラベル付きデータ分類におけるロバストな局所性認識回帰
- Authors: Liangchen Hu and Wensheng Zhang
- Abstract要約: 本稿では,ロバスト局所性認識回帰(RLAR)という特徴抽出フレームワークを提案する。
本モデルでは,クラス間の平均差を使わずに,適応的に境界表現学習を行うために再ターゲット回帰を導入する。
外れ値の乱れを緩和し、過度な適合を防止するため、L2,1ノルムによる正規化項とともに回帰項と局所性を考慮した項を計測する。
- 参考スコア(独自算出の注目度): 5.432221650286726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the dramatic increase of dimensions in the data representation,
extracting latent low-dimensional features becomes of the utmost importance for
efficient classification. Aiming at the problems of unclear margin
representation and difficulty in revealing the data manifold structure in most
of the existing linear discriminant methods, we propose a new discriminant
feature extraction framework, namely Robust Locality-Aware Regression (RLAR).
In our model, we introduce a retargeted regression to perform the marginal
representation learning adaptively instead of using the general average
inter-class margin. Besides, we formulate a new strategy for enhancing the
local intra-class compactness of the data manifold, which can achieve the joint
learning of locality-aware graph structure and desirable projection matrix. To
alleviate the disturbance of outliers and prevent overfitting, we measure the
regression term and locality-aware term together with the regularization term
by the L2,1 norm. Further, forcing the row sparsity on the projection matrix
through the L2,1 norm achieves the cooperation of feature selection and feature
extraction. Then, we derive an effective iterative algorithm for solving the
proposed model. The experimental results over a range of UCI data sets and
other benchmark databases demonstrate that the proposed RLAR outperforms some
state-of-the-art approaches.
- Abstract(参考訳): データ表現における次元の劇的な増加に伴い、潜在低次元特徴の抽出が効率的な分類にとって最も重要となる。
既存の線形判別手法のほとんどにおいて、不明瞭なマージン表現とデータ多様体構造を明らかにすることの難しさを考慮し、ロバスト局所性認識回帰(RLAR)と呼ばれる新しい特徴抽出フレームワークを提案する。
本モデルでは,クラス間の平均差を使わずに,適応的に境界表現学習を行う再ターゲット回帰を導入する。
さらに,局所性認識グラフ構造と望ましい射影行列の合同学習を実現するために,データ多様体の局所的クラス内コンパクト性を高めるための新しい戦略を定式化する。
外れ値の乱れを緩和し、過剰フィットを防止するため、回帰項と局所性認識項をl2,1ノルムによる正規化項とともに測定する。
さらに、L2,1ノルムを通した投影行列に行間隔を強制することにより、特徴選択と特徴抽出の協調を実現する。
そして,提案モデルを解くための効果的な反復アルゴリズムを導出する。
UCIデータセットや他のベンチマークデータベースに対する実験結果は、提案したRLARが最先端のアプローチよりも優れていることを示している。
関連論文リスト
- Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - Adaptive debiased SGD in high-dimensional GLMs with streaming data [4.704144189806667]
我々は、高次元一般化線形モデルにおいて、オンライン推論に新しいアプローチを導入する。
本手法はシングルパスモードで動作し,時間と空間の複雑さを著しく低減する。
提案手法は,ADL (Approximated Debiased Lasso) と呼ばれ,有界な個人確率条件の必要性を緩和するだけでなく,数値性能も著しく向上することを示した。
論文 参考訳(メタデータ) (2024-05-28T15:36:48Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Nonparametric Linear Feature Learning in Regression Through Regularisation [0.0]
連立線形特徴学習と非パラメトリック関数推定のための新しい手法を提案する。
代替最小化を用いることで、データを反復的に回転させ、先頭方向との整合性を改善する。
提案手法の予測リスクは,最小限の仮定と明示的なレートで最小限のリスクに収束することを確認した。
論文 参考訳(メタデータ) (2023-07-24T12:52:55Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
行列データに対して行次元と列次元の両方に隠れたバリエーションを抽出するために,モードワイド・プリンシパル・サブスペース・スーツ (MOP-UP) と呼ばれる新しいフレームワークを導入する。
提案フレームワークの有効性と実用性は、シミュレーションと実データの両方の実験を通して実証される。
論文 参考訳(メタデータ) (2023-07-02T13:59:47Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Graph Constrained Data Representation Learning for Human Motion
Segmentation [14.611777974037194]
本稿では,データの表現を学習し,データ自体からクラスタリング情報を掘り下げる新しい教師なしモデルを提案する。
HMSの4つのベンチマークデータセットによる実験結果から,我々の手法は,最先端手法によるクラスタリング性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2021-07-28T13:49:16Z) - Adaptive Graph-based Generalized Regression Model for Unsupervised
Feature Selection [11.214334712819396]
非相関的かつ識別的特徴の選択は、教師なしの機能選択の重要な問題である。
非相関制約と $ell_2,1$-norm 正規化によって課される新しい一般化回帰モデルを提案する。
それは同時に同じ近所に属するこれらのデータ ポイントの分散を減らすこと無相関および差別的な特徴を選ぶことができます。
論文 参考訳(メタデータ) (2020-12-27T09:07:26Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。