論文の概要: Societal biases reinforcement through machine learning: A credit scoring
perspective
- arxiv url: http://arxiv.org/abs/2006.08350v2
- Date: Sat, 31 Oct 2020 12:48:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 03:51:23.335298
- Title: Societal biases reinforcement through machine learning: A credit scoring
perspective
- Title(参考訳): 機械学習による社会バイアスの強化--信用スコアの視点
- Authors: Bertrand K. Hassani
- Abstract要約: 本稿では、機械学習とAIが社会的偏見の繁栄を確実にするかどうかを分析することを目的とする。
本稿では、顧客の性別や民族性を予測することによって、データの社会的偏見が銀行融資の承認にどのように伝達されるかを分析する。
- 参考スコア(独自算出の注目度): 38.437384481171804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Does machine learning and AI ensure that social biases thrive ? This paper
aims to analyse this issue. Indeed, as algorithms are informed by data, if
these are corrupted, from a social bias perspective, good machine learning
algorithms would learn from the data provided and reverberate the patterns
learnt on the predictions related to either the classification or the
regression intended. In other words, the way society behaves whether positively
or negatively, would necessarily be reflected by the models. In this paper, we
analyse how social biases are transmitted from the data into banks loan
approvals by predicting either the gender or the ethnicity of the customers
using the exact same information provided by customers through their
applications.
- Abstract(参考訳): 機械学習とAIは社会的偏見を育むか?
本稿ではこの問題を分析することを目的とする。
実際、アルゴリズムがデータによって通知されるので、もしこれらが破損した場合、良い機械学習アルゴリズムは、提供されたデータから学習し、分類または意図した回帰に関する予測に基づいて学習したパターンを再検証する。
言い換えれば、社会が肯定的であるか否定的であるかは、必ずしもモデルによって反映される。
本稿では、顧客から提供される全く同じ情報を用いて、顧客の性別または民族性を予測することにより、データの社会的バイアスがどのように銀行融資承認に伝達されるかを分析する。
関連論文リスト
- Fair Generalized Linear Mixed Models [0.0]
機械学習の公正性は、データとモデルの不正確さのバイアスが差別的な決定に結びつかないことを保証することを目的としている。
両問題を同時に処理できるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-15T11:42:41Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
本研究では,機械学習の社会的影響を,特定の文脈に展開されるモデルの集合を考慮し検討する。
デプロイされた機械学習はシステム障害を起こしやすいため、利用可能なすべてのモデルに排他的に誤分類されているユーザもいます。
これらの例は、エコシステムレベルの分析が、機械学習の社会的影響を特徴づける独自の強みを持っていることを示している。
論文 参考訳(メタデータ) (2023-07-12T01:11:52Z) - Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation [66.64736150040093]
機械学習の応用は、私たちの社会でますます広まりつつある。
リスクは、データに埋め込まれたバイアスを体系的に広めることである。
本稿では,特定の種類のバイアスとその組み合わせで合成データを生成するフレームワークを導入することにより,バイアスを分析することを提案する。
論文 参考訳(メタデータ) (2022-09-13T11:18:50Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
アルゴリズムの不公平性は、データ内のモデルとバイアスの間の相互作用に起因すると我々は主張する。
フェアネスブラインドMLアルゴリズムが示す公平さと正確さのトレードオフに関する仮説を、異なるデータバイアス設定下で検討する。
論文 参考訳(メタデータ) (2022-07-13T15:18:30Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z) - On the Basis of Sex: A Review of Gender Bias in Machine Learning
Applications [0.0]
まず、機械学習のジェンダーバイアスの実践例をいくつか紹介する。
次に、機械学習モデルをより公平にする方法に対処するために、最も広く使われているフェアネスの形式化を詳述する。
論文 参考訳(メタデータ) (2021-04-06T14:11:16Z) - Mitigating Gender Bias in Machine Learning Data Sets [5.075506385456811]
ジェンダーバイアスは雇用広告や採用ツールの文脈で特定されている。
本稿では,機械学習のためのトレーニングデータにおける性別バイアスの同定のための枠組みを提案する。
論文 参考訳(メタデータ) (2020-05-14T12:06:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。