論文の概要: Causal Inference with Deep Causal Graphs
- arxiv url: http://arxiv.org/abs/2006.08380v1
- Date: Mon, 15 Jun 2020 13:03:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 02:12:45.791302
- Title: Causal Inference with Deep Causal Graphs
- Title(参考訳): 深い因果グラフを用いた因果推論
- Authors: \'Alvaro Parafita and Jordi Vitri\`a
- Abstract要約: パラメトリック因果モデリング技術は、カウンターファクト推定の機能を提供することはめったにない。
Deep Causal Graphsは、因果分布をモデル化するニューラルネットワークに必要な機能の抽象的な仕様である。
複雑な相互作用をモデル化する上で,その表現力を示し,機械学習の説明可能性と公正性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parametric causal modelling techniques rarely provide functionality for
counterfactual estimation, often at the expense of modelling complexity. Since
causal estimations depend on the family of functions used to model the data,
simplistic models could entail imprecise characterizations of the generative
mechanism, and, consequently, unreliable results. This limits their
applicability to real-life datasets, with non-linear relationships and high
interaction between variables. We propose Deep Causal Graphs, an abstract
specification of the required functionality for a neural network to model
causal distributions, and provide a model that satisfies this contract:
Normalizing Causal Flows. We demonstrate its expressive power in modelling
complex interactions and showcase applications of the method to machine
learning explainability and fairness, using true causal counterfactuals.
- Abstract(参考訳): パラメトリック因果モデリング技術は、しばしばモデリングの複雑さを犠牲にして、カウンターファクトな推定のための機能を提供することは滅多にない。
因果推定はデータのモデル化に使用される関数の族に依存するため、単純化モデルは生成機構の不正確な特徴を補うことができ、結果として信頼性の低い結果が得られる。
これにより、非線形関係と変数間の高い相互作用により、実際のデータセットへの適用性が制限される。
我々は、ニューラルネットワークが因果分布をモデル化するために必要な機能の抽象的な仕様であるDeep Causal Graphsを提案し、この契約を満たすモデルを提供する:因果フローの正規化。
複雑な相互作用をモデル化する上で,その表現力を示し,真の因果反事実を用いて,機械学習の説明可能性と公平性を示す。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Directed Cyclic Graph for Causal Discovery from Multivariate Functional
Data [15.26007975367927]
因果構造学習のための機能線形構造方程式モデルを提案する。
解釈可能性を高めるために,本モデルは低次元因果埋め込み空間を含む。
提案モデルが標準仮定の下で因果的同定可能であることを示す。
論文 参考訳(メタデータ) (2023-10-31T15:19:24Z) - From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling [17.074858228123706]
基本的な理論、方法論、欠点、データセット、メトリクスに重点を置いています。
フェアネス、プライバシ、アウト・オブ・ディストリビューションの一般化、精密医療、生物科学における因果生成モデルの応用について述べる。
論文 参考訳(メタデータ) (2023-10-17T05:45:32Z) - SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling [3.988614978933934]
因果推論は科学の重要な目標であり、研究者は観測データを使って意味のある結論に達することができる。
経路モデル、構造方程式モデル(SEM)および指向非巡回グラフ(DAG)は、現象の根底にある因果構造に関する仮定を明確に特定する手段を提供する。
本稿では,機械学習のスーパーラーナーアンサンブルを統合したパスモデリング手法であるSuper Learner Equation Modelingを提案する。
論文 参考訳(メタデータ) (2023-08-08T16:04:42Z) - Neural Graphical Models [2.6842860806280058]
本稿では,複雑な特徴依存を合理的な計算コストで表現するために,NGM(Neural Graphical Models)を導入する。
ニューラルネットワークをマルチタスク学習フレームワークとして使用することにより,機能間の依存関係構造と複雑な関数表現をキャプチャする。
NGMは、有向グラフ、無向グラフ、混合エッジグラフを含む一般的なグラフ構造に適合し、混合入力データ型をサポートする。
論文 参考訳(メタデータ) (2022-10-02T07:59:51Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - LowFER: Low-rank Bilinear Pooling for Link Prediction [4.110108749051657]
本稿では,多モーダル学習においてよく用いられる因子化双線形プールモデルを提案する。
我々のモデルは、他のモデルを一般化することが示されている分解タッカーベースのタッカーモデルを自然に一般化する。
実世界のデータセット、パー・オブ・ザ・アーティファクトのパフォーマンスについて評価する。
論文 参考訳(メタデータ) (2020-08-25T07:33:52Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - Learning Causal Models Online [103.87959747047158]
予測モデルは、予測を行うためにデータの急激な相関に依存することができる。
強い一般化を達成するための一つの解決策は、モデルに因果構造を組み込むことである。
本稿では,突発的特徴を継続的に検出・除去するオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-12T20:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。