論文の概要: On Lipschitz Regularization of Convolutional Layers using Toeplitz
Matrix Theory
- arxiv url: http://arxiv.org/abs/2006.08391v2
- Date: Sat, 7 Nov 2020 17:15:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 03:05:35.256152
- Title: On Lipschitz Regularization of Convolutional Layers using Toeplitz
Matrix Theory
- Title(参考訳): トープリッツ行列理論を用いた畳み込み層のリプシッツ正則化について
- Authors: Alexandre Araujo, Benjamin Negrevergne, Yann Chevaleyre, Jamal Atif
- Abstract要約: リプシッツ正則性は現代のディープラーニングの重要な性質として確立されている。
ニューラルネットワークのリプシッツ定数の正確な値を計算することはNPハードであることが知られている。
より厳密で計算が容易な畳み込み層に対する新しい上限を導入する。
- 参考スコア(独自算出の注目度): 77.18089185140767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles the problem of Lipschitz regularization of Convolutional
Neural Networks. Lipschitz regularity is now established as a key property of
modern deep learning with implications in training stability, generalization,
robustness against adversarial examples, etc. However, computing the exact
value of the Lipschitz constant of a neural network is known to be NP-hard.
Recent attempts from the literature introduce upper bounds to approximate this
constant that are either efficient but loose or accurate but computationally
expensive. In this work, by leveraging the theory of Toeplitz matrices, we
introduce a new upper bound for convolutional layers that is both tight and
easy to compute. Based on this result we devise an algorithm to train Lipschitz
regularized Convolutional Neural Networks.
- Abstract(参考訳): 本稿では,畳み込みニューラルネットワークのリプシッツ正則化の問題に取り組む。
リプシッツ正則性は現在、訓練安定性、一般化、敵の例に対する堅牢性など、現代のディープラーニングの重要な性質として確立されている。
しかし、ニューラルネットワークのリプシッツ定数の正確な値はNPハードであることが知られている。
論文の最近の試みでは、効率的だがゆるく、正確だが計算コストが高いこの定数を近似するために上界を導入する。
本研究では, トイプリッツ行列の理論を活用することにより, より厳密かつ容易に計算できる畳み込み層に対する新しい上限を導入する。
この結果に基づき、リプシッツ正規化畳み込みニューラルネットワークを訓練するアルゴリズムを考案する。
関連論文リスト
- Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram
Iteration [122.51142131506639]
循環行列理論を用いて畳み込み層のスペクトルノルムに対して、精密で高速で微分可能な上界を導入する。
提案手法は, 精度, 計算コスト, スケーラビリティの観点から, 他の最先端手法よりも優れていることを示す。
これは畳み込みニューラルネットワークのリプシッツ正則化に非常に効果的であり、並行アプローチに対する競合的な結果である。
論文 参考訳(メタデータ) (2023-05-25T15:32:21Z) - Efficiently Computing Local Lipschitz Constants of Neural Networks via
Bound Propagation [79.13041340708395]
リプシッツ定数は、堅牢性、公正性、一般化など、ニューラルネットワークの多くの性質と結びついている。
既存のリプシッツ定数の計算法は、相対的に緩い上界を生成するか、小さなネットワークに制限される。
ニューラルネットワークの局所リプシッツ定数$ell_infty$をクラーク・ヤコビアンのノルムを強く上向きに上向きに計算する効率的なフレームワークを開発する。
論文 参考訳(メタデータ) (2022-10-13T22:23:22Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
認証された堅牢性は、安全クリティカルなアプリケーションにおいて、ディープニューラルネットワークにとって望ましい性質である。
提案手法は,MNISTおよびTinyNetデータセットにおける最先端の手法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-11-02T06:44:10Z) - LipBaB: Computing exact Lipschitz constant of ReLU networks [0.0]
LipBaBは、ディープニューラルネットワークのローカルLipschitz定数の認定境界を計算するためのフレームワークです。
このアルゴリズムは任意の p-ノルムに対するリプシッツ定数の正確な計算を提供することができる。
論文 参考訳(メタデータ) (2021-05-12T08:06:11Z) - CLIP: Cheap Lipschitz Training of Neural Networks [0.0]
ニューラルネットワークのLipschitz定数を制御するためのCLIPという変分正規化手法を検討する。
提案モデルを数学的に解析し,特にネットワークの出力に対する選択正規化パラメータの影響について考察した。
論文 参考訳(メタデータ) (2021-03-23T13:29:24Z) - Lipschitz constant estimation of Neural Networks via sparse polynomial
optimization [47.596834444042685]
LiPoptは、ニューラルネットワークのリプシッツ定数上のより厳密な上限を計算するためのフレームワークである。
ネットワークの疎結合性を利用して、ネットワークの複雑さを大幅に軽減する方法を示す。
ランダムな重みを持つネットワークと、MNISTで訓練されたネットワークで実験を行う。
論文 参考訳(メタデータ) (2020-04-18T18:55:02Z) - Exactly Computing the Local Lipschitz Constant of ReLU Networks [98.43114280459271]
ニューラルネットワークの局所リプシッツ定数は、堅牢性、一般化、公正性評価に有用な指標である。
ReLUネットワークのリプシッツ定数を推定するために, 強い不適合性を示す。
このアルゴリズムを用いて、競合するリプシッツ推定器の密度と正規化トレーニングがリプシッツ定数に与える影響を評価する。
論文 参考訳(メタデータ) (2020-03-02T22:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。