論文の概要: Does it matter how well I know what you're thinking? Opponent Modelling
in an RTS game
- arxiv url: http://arxiv.org/abs/2006.08659v1
- Date: Mon, 15 Jun 2020 18:10:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 04:27:27.668352
- Title: Does it matter how well I know what you're thinking? Opponent Modelling
in an RTS game
- Title(参考訳): あなたが何を考えているのか、どれだけよく知っていますか。
RTSゲームにおける対向モデル
- Authors: James Goodman, Simon Lucas
- Abstract要約: 実時間戦略ゲームにおいて,モンテカルロ木探索 (MCTS) とローリング水平進化アルゴリズム (RHEA) の対戦者のモデリング精度に対する感度について検討した。
我々は、未知の相手と低い計算予算に直面して、RHEAで明示的なモデルを使用しず、MCTSアルゴリズムの一部としてツリー内の相手の動作をモデル化した方がよいことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Opponent Modelling tries to predict the future actions of opponents, and is
required to perform well in multi-player games. There is a deep literature on
learning an opponent model, but much less on how accurate such models must be
to be useful. We investigate the sensitivity of Monte Carlo Tree Search (MCTS)
and a Rolling Horizon Evolutionary Algorithm (RHEA) to the accuracy of their
modelling of the opponent in a simple Real-Time Strategy game. We find that in
this domain RHEA is much more sensitive to the accuracy of an opponent model
than MCTS. MCTS generally does better even with an inaccurate model, while this
will degrade RHEA's performance. We show that faced with an unknown opponent
and a low computational budget it is better not to use any explicit model with
RHEA, and to model the opponent's actions within the tree as part of the MCTS
algorithm.
- Abstract(参考訳): Opponent Modellingは、対戦者の将来の行動を予測しようと試み、マルチプレイヤーゲームでうまく機能する必要がある。
相手のモデルを学ぶことについては深い文献があるが、そのモデルの正確さはそれほど重要ではない。
実時間戦略ゲームにおいて,モンテカルロ木探索(MCTS)とローリング水平進化アルゴリズム(RHEA)の,相手のモデリング精度に対する感度について検討した。
この領域では、RHEAはMCTSよりも敵モデルの精度にはるかに敏感である。
MCTSは一般に不正確なモデルでも良いが、RHEAの性能は低下する。
我々は、未知の相手と低い計算予算に直面して、RHEAで明示的なモデルを使用しず、MCTSアルゴリズムの一部としてツリー内の相手の動作をモデル化した方がよいことを示す。
関連論文リスト
- A Minimaximalist Approach to Reinforcement Learning from Human Feedback [49.45285664482369]
人間のフィードバックから強化学習を行うアルゴリズムとして,SPO(Self-Play Preference Optimization)を提案する。
我々のアプローチは、報酬モデルや不安定な敵の訓練を必要としないという点で最小主義である。
我々は,一連の継続的制御タスクにおいて,報酬モデルに基づくアプローチよりもはるかに効率的に学習できることを実証した。
論文 参考訳(メタデータ) (2024-01-08T17:55:02Z) - Know your Enemy: Investigating Monte-Carlo Tree Search with Opponent
Models in Pommerman [14.668309037894586]
強化学習(Reinforcement Learning)と組み合わせて、モンテカルロ木探索(Monte-Carlo Tree Search)はChess、Shogi、Goといったゲームにおいて、人間のグランドマスターよりも優れていることを示した。
汎用マルチプレイヤーゲームからシングルプレイヤーゲームと2プレイヤーゲームに変換する手法について検討する。
論文 参考訳(メタデータ) (2023-05-22T16:39:20Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
ニューラルビデオゲームシミュレータのためのPGM(Promptable Game Model)を提案する。
ユーザーは高レベルのアクションシーケンスと低レベルのアクションシーケンスでゲームを実行することができる。
私たちのPGMは、エージェントの目標をプロンプトの形で指定することで、ディレクターのモードをアンロックします。
提案手法は,既存のニューラルビデオゲームシミュレータのレンダリング品質を著しく上回り,現在の最先端の能力を超えたアプリケーションをアンロックする。
論文 参考訳(メタデータ) (2023-03-23T17:43:17Z) - Revisiting RCAN: Improved Training for Image Super-Resolution [94.8765153437517]
一般的なRCANモデルを再検討し、SRにおける異なるトレーニングオプションの効果について検討する。
RCAN は CNN をベースとした SR アーキテクチャのほぼすべてにおいて,標準ベンチマークで RCAN 以降のアーキテクチャよりも優れるか,あるいは適合することを示す。
論文 参考訳(メタデータ) (2022-01-27T02:20:11Z) - Towards Action Model Learning for Player Modeling [1.9659095632676098]
プレイヤーモデリングは、ゲームにおけるプレイヤーの振る舞いを正確に近似する計算モデルを作ろうとする。
ほとんどのプレイヤーモデリング技術はドメイン知識に依存しており、ゲーム間で転送できない。
本稿では,アクションモデル学習(AML)を用いて,ドメインに依存しない方法でプレーヤモデルを学習する。
論文 参考訳(メタデータ) (2021-03-09T19:32:30Z) - Markov Cricket: Using Forward and Inverse Reinforcement Learning to
Model, Predict And Optimize Batting Performance in One-Day International
Cricket [0.8122270502556374]
我々は1日の国際クリケットゲームをマルコフプロセスとしてモデル化し、前向きおよび逆強化学習(RL)を適用してゲームのための3つの新しいツールを開発する。
本手法は,残余スコアリング資源のプロキシとして使用する場合,最先端のDuckworth-Lewis-Stern法を3倍から10倍に向上させることを示す。
予測とシミュレーションのテクニックは中断されたゲームの最終スコアを推定するためのより公平な代替手段となり得るが、推定された報酬モデルはプロのゲームがプレイ戦略を最適化するための有用な洞察を提供するかもしれない。
論文 参考訳(メタデータ) (2021-03-07T13:11:16Z) - L2E: Learning to Exploit Your Opponent [66.66334543946672]
本稿では,暗黙的対向モデリングのための新しい学習フレームワークを提案する。
L2Eは、トレーニング中に異なる相手との対話によって、相手を悪用する能力を取得する。
本稿では, 対戦相手を自動的に生成する新しい対戦相手戦略生成アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-18T14:27:59Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z) - Enhanced Rolling Horizon Evolution Algorithm with Opponent Model
Learning: Results for the Fighting Game AI Competition [9.75720700239984]
本稿では,RHEA(Rolling Horizon Evolution Algorithm)と対向モデル学習を組み合わせた新しいアルゴリズムを提案する。
2019年の競争で上位5つのボットのうち、モンテカルロツリーサーチ(MCTS)を使用しないボットは、ポリシーグラディエントベースの対戦モデルによるボットのみである。
論文 参考訳(メタデータ) (2020-03-31T04:44:33Z) - Model-Based Reinforcement Learning for Atari [89.3039240303797]
エージェントがモデルフリーの手法よりも少ないインタラクションでAtariゲームを解くことができることを示す。
本実験は,エージェントと環境間の100kの相互作用の少ないデータ構造における,AtariゲームにおけるSimPLeの評価である。
論文 参考訳(メタデータ) (2019-03-01T15:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。