Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast,
Differentiable Fluid Models that Generalize
- URL: http://arxiv.org/abs/2006.08762v3
- Date: Tue, 2 Mar 2021 12:59:03 GMT
- Title: Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast,
Differentiable Fluid Models that Generalize
- Authors: Nils Wandel, Michael Weinmann, Reinhard Klein
- Abstract summary: Recent deep learning based approaches promise vast speed-ups but do not generalize to new fluid domains.
We propose a novel physics-constrained training approach that generalizes to new fluid domains.
We present an interactive real-time demo to show the speed and generalization capabilities of our trained models.
- Score: 7.707887663337803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fast and stable fluid simulations are an essential prerequisite for
applications ranging from computer-generated imagery to computer-aided design
in research and development. However, solving the partial differential
equations of incompressible fluids is a challenging task and traditional
numerical approximation schemes come at high computational costs. Recent deep
learning based approaches promise vast speed-ups but do not generalize to new
fluid domains, require fluid simulation data for training, or rely on complex
pipelines that outsource major parts of the fluid simulation to traditional
methods.
In this work, we propose a novel physics-constrained training approach that
generalizes to new fluid domains, requires no fluid simulation data, and allows
convolutional neural networks to map a fluid state from time-point t to a
subsequent state at time t + dt in a single forward pass. This simplifies the
pipeline to train and evaluate neural fluid models. After training, the
framework yields models that are capable of fast fluid simulations and can
handle various fluid phenomena including the Magnus effect and Karman vortex
streets. We present an interactive real-time demo to show the speed and
generalization capabilities of our trained models. Moreover, the trained neural
networks are efficient differentiable fluid solvers as they offer a
differentiable update step to advance the fluid simulation in time. We exploit
this fact in a proof-of-concept optimal control experiment. Our models
significantly outperform a recent differentiable fluid solver in terms of
computational speed and accuracy.
Related papers
- Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
We develop a new method that blends numerical solvers with neural operators to accelerate such simulations.
We demonstrate the effectiveness of this framework on simulations of microstructure evolution during physical vapor deposition.
arXiv Detail & Related papers (2023-12-08T23:44:54Z) - FluidLab: A Differentiable Environment for Benchmarking Complex Fluid
Manipulation [80.63838153351804]
We introduce FluidLab, a simulation environment with a diverse set of manipulation tasks involving complex fluid dynamics.
At the heart of our platform is a fully differentiable physics simulator, providing GPU-accelerated simulations and gradient calculations.
We propose several domain-specific optimization schemes coupled with differentiable physics.
arXiv Detail & Related papers (2023-03-04T07:24:22Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
We use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows.
For both direct numerical simulation of turbulence and large eddy simulation, our results are as accurate as baseline solvers with 8-10x finer resolution in each spatial dimension.
Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.
arXiv Detail & Related papers (2021-01-28T19:10:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Teaching the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D [4.981834139548193]
In this work, we present significant extensions to a recently proposed deep learning framework, which addresses the aforementioned challenges in 2D.
We go from 2D to 3D and propose an efficient architecture to cope with the high demands of 3D grids in terms of memory and computational complexity.
Our method indicates strong improvements in terms of accuracy, speed and generalization capabilities over current 3D NN-based fluid models.
arXiv Detail & Related papers (2020-12-22T09:21:40Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
We show that an accurate deep-learning-based proxy model can be taught efficiently by a finite-volume-based simulator.
Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation.
We quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration.
arXiv Detail & Related papers (2020-06-09T17:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.