Teaching the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D
- URL: http://arxiv.org/abs/2012.11893v2
- Date: Wed, 24 Mar 2021 00:04:46 GMT
- Title: Teaching the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D
- Authors: Nils Wandel, Michael Weinmann, Reinhard Klein
- Abstract summary: In this work, we present significant extensions to a recently proposed deep learning framework, which addresses the aforementioned challenges in 2D.
We go from 2D to 3D and propose an efficient architecture to cope with the high demands of 3D grids in terms of memory and computational complexity.
Our method indicates strong improvements in terms of accuracy, speed and generalization capabilities over current 3D NN-based fluid models.
- Score: 4.981834139548193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physically plausible fluid simulations play an important role in modern
computer graphics and engineering. However, in order to achieve real-time
performance, computational speed needs to be traded-off with physical accuracy.
Surrogate fluid models based on neural networks have the potential to achieve
both, fast fluid simulations and high physical accuracy. However, these
approaches rely on massive amounts of training data, require complex pipelines
for training and inference or do not generalize to new fluid domains.
In this work, we present significant extensions to a recently proposed deep
learning framework, which addresses the aforementioned challenges in 2D. We go
from 2D to 3D and propose an efficient architecture to cope with the high
demands of 3D grids in terms of memory and computational complexity.
Furthermore, we condition the neural fluid model on additional information
about the fluid's viscosity and density which allows simulating laminar as well
as turbulent flows based on the same surrogate model.
Our method allows to train fluid models without requiring fluid simulation
data beforehand. Inference is fast and simple, as the fluid model directly maps
a fluid state and boundary conditions at a moment t to a subsequent fluid state
at t+dt. We obtain real-time fluid simulations on a 128x64x64 grid that include
various fluid phenomena such as the Magnus effect or Karman vortex streets and
generalize to domain geometries not considered during training. Our method
indicates strong improvements in terms of accuracy, speed and generalization
capabilities over current 3D NN-based fluid models.
Related papers
- Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - FluidLab: A Differentiable Environment for Benchmarking Complex Fluid
Manipulation [80.63838153351804]
We introduce FluidLab, a simulation environment with a diverse set of manipulation tasks involving complex fluid dynamics.
At the heart of our platform is a fully differentiable physics simulator, providing GPU-accelerated simulations and gradient calculations.
We propose several domain-specific optimization schemes coupled with differentiable physics.
arXiv Detail & Related papers (2023-03-04T07:24:22Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Fast Aquatic Swimmer Optimization with Differentiable Projective
Dynamics and Neural Network Hydrodynamic Models [23.480913364381664]
Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of interest to biologists and engineers.
We present a novel, fully differentiable hybrid approach to FSI that combines a 2D numerical simulation for the deformable solid structure of the swimmer.
We demonstrate the computational efficiency and differentiability of our hybrid simulator on a 2D carangiform swimmer.
arXiv Detail & Related papers (2022-03-30T15:21:44Z) - Real-time simulation of parameter-dependent fluid flows through deep
learning-based reduced order models [0.2538209532048866]
Reduced order models (ROMs) provide reliable approximations to parameter-dependent fluid dynamics problems in rapid times.
Deep learning (DL)-based ROMs overcome all these limitations by learning in a non-intrusive way both the nonlinear trial manifold and the reduced dynamics.
The resulting POD-DL-ROMs are shown to provide accurate results in almost real-time for the flow around a cylinder benchmark, the fluid-structure interaction between an elastic beam attached to a fixed, rigid block and a laminar incompressible flow, and the blood flow in a cerebral aneurysm.
arXiv Detail & Related papers (2021-06-10T13:07:33Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
We use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows.
For both direct numerical simulation of turbulence and large eddy simulation, our results are as accurate as baseline solvers with 8-10x finer resolution in each spatial dimension.
Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.
arXiv Detail & Related papers (2021-01-28T19:10:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast,
Differentiable Fluid Models that Generalize [7.707887663337803]
Recent deep learning based approaches promise vast speed-ups but do not generalize to new fluid domains.
We propose a novel physics-constrained training approach that generalizes to new fluid domains.
We present an interactive real-time demo to show the speed and generalization capabilities of our trained models.
arXiv Detail & Related papers (2020-06-15T20:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.