Rethinking materials simulations: Blending direct numerical simulations
with neural operators
- URL: http://arxiv.org/abs/2312.05410v1
- Date: Fri, 8 Dec 2023 23:44:54 GMT
- Title: Rethinking materials simulations: Blending direct numerical simulations
with neural operators
- Authors: Vivek Oommen, Khemraj Shukla, Saaketh Desai, Remi Dingreville, George
Em Karniadakis
- Abstract summary: We develop a new method that blends numerical solvers with neural operators to accelerate such simulations.
We demonstrate the effectiveness of this framework on simulations of microstructure evolution during physical vapor deposition.
- Score: 1.6874375111244329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Direct numerical simulations (DNS) are accurate but computationally expensive
for predicting materials evolution across timescales, due to the complexity of
the underlying evolution equations, the nature of multiscale spatio-temporal
interactions, and the need to reach long-time integration. We develop a new
method that blends numerical solvers with neural operators to accelerate such
simulations. This methodology is based on the integration of a community
numerical solver with a U-Net neural operator, enhanced by a
temporal-conditioning mechanism that enables accurate extrapolation and
efficient time-to-solution predictions of the dynamics. We demonstrate the
effectiveness of this framework on simulations of microstructure evolution
during physical vapor deposition modeled via the phase-field method. Such
simulations exhibit high spatial gradients due to the co-evolution of different
material phases with simultaneous slow and fast materials dynamics. We
establish accurate extrapolation of the coupled solver with up to 16.5$\times$
speed-up compared to DNS. This methodology is generalizable to a broad range of
evolutionary models, from solid mechanics, to fluid dynamics, geophysics,
climate, and more.
Related papers
- Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps [0.0]
This paper showcases how deep learning techniques can be used to develop a precise time-stepping approach for multiscale systems.
The resulting framework achieves state-of-the-art predictive accuracy while incurring lesser computational costs.
arXiv Detail & Related papers (2024-04-28T14:05:13Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
We introduce MultiScaleGNN, a novel multi-scale graph neural network model for learning to infer unsteady continuum mechanics.
We demonstrate this method on advection problems and incompressible fluid dynamics, both fundamental phenomena in oceanic and atmospheric processes.
Simulations obtained with MultiScaleGNN are between two and four orders of magnitude faster than those on which it was trained.
arXiv Detail & Related papers (2022-05-05T13:33:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
We develop a model for learning heterogeneous and dynamic patterns of velocity field data.
We show the effectiveness of our techniques to the NGSIM dataset of complex multi-vehicle interactions.
arXiv Detail & Related papers (2021-02-15T17:45:46Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast,
Differentiable Fluid Models that Generalize [7.707887663337803]
Recent deep learning based approaches promise vast speed-ups but do not generalize to new fluid domains.
We propose a novel physics-constrained training approach that generalizes to new fluid domains.
We present an interactive real-time demo to show the speed and generalization capabilities of our trained models.
arXiv Detail & Related papers (2020-06-15T20:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.