Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems
- URL: http://arxiv.org/abs/2401.16612v1
- Date: Mon, 29 Jan 2024 22:52:57 GMT
- Title: Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems
- Authors: Giovanni S. Alberti, Luca Ratti, Matteo Santacesaria, Silvia Sciutto
- Abstract summary: In inverse problems, the incorporation of a sparsity prior yields a regularization effect on the solution.
We propose a probabilistic sparsity prior formulated as a mixture of Gaussians, capable of modeling sparsity with respect to a generic basis.
We put forth both a supervised and an unsupervised training strategy to estimate the parameters of this network.
- Score: 2.375943263571389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In inverse problems, it is widely recognized that the incorporation of a
sparsity prior yields a regularization effect on the solution. This approach is
grounded on the a priori assumption that the unknown can be appropriately
represented in a basis with a limited number of significant components, while
most coefficients are close to zero. This occurrence is frequently observed in
real-world scenarios, such as with piecewise smooth signals. In this study, we
propose a probabilistic sparsity prior formulated as a mixture of degenerate
Gaussians, capable of modeling sparsity with respect to a generic basis. Under
this premise, we design a neural network that can be interpreted as the Bayes
estimator for linear inverse problems. Additionally, we put forth both a
supervised and an unsupervised training strategy to estimate the parameters of
this network. To evaluate the effectiveness of our approach, we conduct a
numerical comparison with commonly employed sparsity-promoting regularization
techniques, namely LASSO, group LASSO, iterative hard thresholding, and sparse
coding/dictionary learning. Notably, our reconstructions consistently exhibit
lower mean square error values across all $1$D datasets utilized for the
comparisons, even in cases where the datasets significantly deviate from a
Gaussian mixture model.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Simulation-based Inference with the Generalized Kullback-Leibler
Divergence [8.868822699365618]
The goal is to solve the inverse problem when the likelihood is only known implicitly.
We investigate a hybrid model that offers the best of both worlds by learning a normalized base distribution and a learned ratio.
arXiv Detail & Related papers (2023-10-03T05:42:53Z) - Generalized Oversampling for Learning from Imbalanced datasets and
Associated Theory [0.0]
In supervised learning, it is quite frequent to be confronted with real imbalanced datasets.
We propose a data augmentation procedure, the GOLIATH algorithm, based on kernel density estimates.
We evaluate the performance of the GOLIATH algorithm in imbalanced regression situations.
arXiv Detail & Related papers (2023-08-05T23:08:08Z) - Regularization, early-stopping and dreaming: a Hopfield-like setup to
address generalization and overfitting [0.0]
We look for optimal network parameters by applying a gradient descent over a regularized loss function.
Within this framework, the optimal neuron-interaction matrices correspond to Hebbian kernels revised by a reiterated unlearning protocol.
arXiv Detail & Related papers (2023-08-01T15:04:30Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning [81.1071978288003]
In particular, we seek to understand the behaviour of the em generalization error of iterative SSL algorithms using information-theoretic principles.
Our theoretical results suggest that when the class conditional variances are not too large, the upper bound on the generalization error decreases monotonically with the number of iterations, but quickly saturates.
arXiv Detail & Related papers (2021-10-03T05:38:49Z) - Sharp global convergence guarantees for iterative nonconvex
optimization: A Gaussian process perspective [30.524043513721168]
We develop a general recipe for analyzing the convergence of iterative algorithms for a class of regression models.
deterministicly, we accurately capture both the convergence rate of the algorithm and the eventual error floor in the finite-sample regime.
We show sharp convergence rates for both higher-order algorithms based on alternating updates and first-order algorithms based on subgradient subgradients.
arXiv Detail & Related papers (2021-09-20T21:48:19Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
We study binary linear classification under a generative Gaussian mixture model.
We derive novel non-asymptotic bounds on the classification error of the latter.
Our results extend to a noisy model with constant probability noise flips.
arXiv Detail & Related papers (2020-11-18T07:59:55Z) - Total Deep Variation: A Stable Regularizer for Inverse Problems [71.90933869570914]
We introduce the data-driven general-purpose total deep variation regularizer.
In its core, a convolutional neural network extracts local features on multiple scales and in successive blocks.
We achieve state-of-the-art results for numerous imaging tasks.
arXiv Detail & Related papers (2020-06-15T21:54:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.