論文の概要: Explaining reputation assessments
- arxiv url: http://arxiv.org/abs/2006.08818v1
- Date: Mon, 15 Jun 2020 23:19:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 04:55:53.490705
- Title: Explaining reputation assessments
- Title(参考訳): 評判評価の解説
- Authors: Ingrid Nunes, Phillip Taylor, Lina Barakat, Nathan Griffiths, Simon
Miles
- Abstract要約: 本稿では,定量的評価モデルによる評価の根拠を説明するためのアプローチを提案する。
提案手法は,複数属性決定モデルを用いて決定を下すための既存のアプローチを適応し,拡張し,組み合わせる。
- 参考スコア(独自算出の注目度): 6.87724532311602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reputation is crucial to enabling human or software agents to select among
alternative providers. Although several effective reputation assessment methods
exist, they typically distil reputation into a numerical representation, with
no accompanying explanation of the rationale behind the assessment. Such
explanations would allow users or clients to make a richer assessment of
providers, and tailor selection according to their preferences and current
context. In this paper, we propose an approach to explain the rationale behind
assessments from quantitative reputation models, by generating arguments that
are combined to form explanations. Our approach adapts, extends and combines
existing approaches for explaining decisions made using multi-attribute
decision models in the context of reputation. We present example argument
templates, and describe how to select their parameters using explanation
algorithms. Our proposal was evaluated by means of a user study, which followed
an existing protocol. Our results give evidence that although explanations
present a subset of the information of trust scores, they are sufficient to
equally evaluate providers recommended based on their trust score. Moreover,
when explanation arguments reveal implicit model information, they are less
persuasive than scores.
- Abstract(参考訳): 評価は、人間またはソフトウェアエージェントが代替プロバイダの中から選択できるようにするのに不可欠である。
いくつかの効果的な評価方法が存在するが、通常は評価の背後にある根拠の説明を伴わず、評価を数値的な表現に分解する。
このような説明により、ユーザやクライアントはプロバイダをよりリッチに評価でき、好みや現在の状況に応じて選択を調整できる。
本稿では,定量的評価モデルから評価の背後にある理論的根拠を説明するための手法を提案する。
我々のアプローチは、評価の文脈において、複数の属性決定モデルを用いた決定を説明する既存のアプローチを適応し、拡張し、結合する。
本稿では,引数テンプレートの例を示し,そのパラメータを説明アルゴリズムを用いて選択する方法を説明する。
本提案は,既存のプロトコルに準拠したユーザ調査によって評価された。
以上の結果から,信頼スコアの情報のサブセットは説明されているものの,信頼スコアに基づいて推奨するプロバイダを等しく評価する上で十分であることを示す。
さらに、説明論が暗黙的なモデル情報を明らかにする場合、スコアよりも説得力が少ない。
関連論文リスト
- Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations [85.81295563405433]
言語モデルユーザーは、しばしば仕様を欠いたクエリを発行するが、クエリが発行されたコンテキストは明示的ではない。
提案手法は,不特定クエリを取り巻くコンテキストを合成的に構築し,評価中に提供するプロトコルである。
その結果,1) モデルペア間の勝利率の反転,2) モデルペア間の勝利率の低下,2) パターンなどの表面レベル基準に基づく判断の少ない評価,3) 様々な文脈におけるモデル行動に関する新たな洞察の提供,といった結果が得られた。
論文 参考訳(メタデータ) (2024-11-11T18:58:38Z) - Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation [26.214148426964794]
ユーザの感情に焦点をあてた新しいデータセットと評価手法を導入する。
購入後のレビューから,ユーザの肯定的,否定的な意見を明示的に抽出し,データセットを構築する。
生成した説明文がユーザの感情に合致するかどうかに基づいてシステムを評価することを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:15:00Z) - Aligning Explanations for Recommendation with Rating and Feature via Maximizing Mutual Information [29.331050754362803]
現在の説明生成手法は,既存のユーザレビューを模倣する目的で一般的に訓練されている。
MMIフレームワークと呼ばれるフレキシブルなモデルに依存しない手法を提案し、生成した自然言語の説明と予測された評価/重要項目の特徴との整合性を高める。
私たちのMMIフレームワークは、さまざまなバックボーンモデルを強化し、予測された評価やアイテム機能との整合性の観点から、既存のベースラインを上回ります。
論文 参考訳(メタデータ) (2024-07-18T08:29:55Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - What if you said that differently?: How Explanation Formats Affect Human Feedback Efficacy and User Perception [53.4840989321394]
我々は,QAモデルが生成した有理性の効果を分析し,その答えを支持する。
ユーザに対して,様々な形式で誤った回答とそれに対応する有理性を提示する。
このフィードバックの有効性を,文脈内学習を通じて評価する。
論文 参考訳(メタデータ) (2023-11-16T04:26:32Z) - Using Natural Language Explanations to Rescale Human Judgments [81.66697572357477]
大規模言語モデル(LLM)を用いて順序付けアノテーションと説明を再スケールする手法を提案する。
我々は、アノテータのLikert評価とそれに対応する説明をLLMに入力し、スコア付けルーリックに固定された数値スコアを生成する。
提案手法は,合意に影響を及ぼさずに生の判断を再スケールし,そのスコアを同一のスコア付けルーリックに接する人間の判断に近づける。
論文 参考訳(メタデータ) (2023-05-24T06:19:14Z) - Graph-based Extractive Explainer for Recommendations [38.278148661173525]
ユーザ,項目,属性,文をシームレスに統合し,抽出に基づく説明を行うグラフ注意型ニューラルネットワークモデルを開発した。
個々の文の関連性, 属性カバレッジ, 内容冗長性のバランスをとるために, 整数線形プログラミング問題を解くことにより, 文の最終的な選択を行う。
論文 参考訳(メタデータ) (2022-02-20T04:56:10Z) - From Intrinsic to Counterfactual: On the Explainability of
Contextualized Recommender Systems [43.93801836660617]
本研究では、コンテキスト的特徴(例えば、ユーザからの項目レビュー)を活用することで、一連の説明可能なレコメンデータシステムを設計できることを示す。
モデルの透明性を段階的に変化させる3つの方法として,ホワイトボックス,グレーボックス,ブラックボックスの3種類を提案する。
我々のモデルは高い競争力のあるランキング性能を達成し、多数の量的指標と定性的な視覚化の観点から正確かつ効果的な説明を生成する。
論文 参考訳(メタデータ) (2021-10-28T01:54:04Z) - Counterfactual Explainable Recommendation [22.590877963169103]
本稿では、因果推論から反実的推論の洞察を取り入れて説明可能な推薦を行うCountERを提案する。
CountERは、モデル決定に対して単純(低複雑性)で効果的な(高強度)説明を求める。
以上の結果から,我々のモデルは,最先端のレコメンデーションモデルよりも正確かつ効果的に説明できることを示す。
論文 参考訳(メタデータ) (2021-08-24T06:37:57Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
我々は,試行錯誤の予測に例ベースの説明を与えることのできる,プロトタイプベースの学生ネットワークのより広範な採用を論じる。
類似カーネル以外のプロトタイプベースのネットワークは,分類精度を損なうことなく,有意義な説明と有望な外乱検出結果が得られることを示す。
論文 参考訳(メタデータ) (2020-11-11T05:58:17Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。