Calibrating Deep Neural Network Classifiers on Out-of-Distribution
Datasets
- URL: http://arxiv.org/abs/2006.08914v1
- Date: Tue, 16 Jun 2020 04:06:21 GMT
- Title: Calibrating Deep Neural Network Classifiers on Out-of-Distribution
Datasets
- Authors: Zhihui Shao, and Jianyi Yang, and Shaolei Ren
- Abstract summary: CCAC (Confidence with an Auxiliary Class) is a new post-hoc confidence calibration method for deep neural network (DNN)
Key novelty of CCAC is an auxiliary class in the calibration model which separates mis-classified samples from correctly classified ones.
Our experiments on different DNN models, datasets and applications show that CCAC can consistently outperform the prior post-hoc calibration methods.
- Score: 20.456742449675904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To increase the trustworthiness of deep neural network (DNN) classifiers, an
accurate prediction confidence that represents the true likelihood of
correctness is crucial. Towards this end, many post-hoc calibration methods
have been proposed to leverage a lightweight model to map the target DNN's
output layer into a calibrated confidence. Nonetheless, on an
out-of-distribution (OOD) dataset in practice, the target DNN can often
mis-classify samples with a high confidence, creating significant challenges
for the existing calibration methods to produce an accurate confidence. In this
paper, we propose a new post-hoc confidence calibration method, called CCAC
(Confidence Calibration with an Auxiliary Class), for DNN classifiers on OOD
datasets. The key novelty of CCAC is an auxiliary class in the calibration
model which separates mis-classified samples from correctly classified ones,
thus effectively mitigating the target DNN's being confidently wrong. We also
propose a simplified version of CCAC to reduce free parameters and facilitate
transfer to a new unseen dataset. Our experiments on different DNN models,
datasets and applications show that CCAC can consistently outperform the prior
post-hoc calibration methods.
Related papers
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
Modern deep neural networks (DNNs) often suffer from overconfidence, leading to miscalibration.
We propose a novel post-hoc calibration method called feature clipping (FC) to address this issue.
FC involves clipping feature values to a specified threshold, effectively increasing entropy in high calibration error samples.
arXiv Detail & Related papers (2024-10-16T06:44:35Z) - CALICO: Confident Active Learning with Integrated Calibration [11.978551396144532]
We propose an AL framework that self-calibrates the confidence used for sample selection during the training process.
We show improved classification performance compared to a softmax-based classifier with fewer labeled samples.
arXiv Detail & Related papers (2024-07-02T15:05:19Z) - Towards Calibrated Deep Clustering Network [60.71776081164377]
In deep clustering, the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy.
We propose a novel dual-head (calibration head and clustering head) deep clustering model that can effectively calibrate the estimated confidence and the actual accuracy.
Extensive experiments demonstrate the proposed calibrated deep clustering model not only surpasses state-of-the-art deep clustering methods by 10 times in terms of expected calibration error but also significantly outperforms them in terms of clustering accuracy.
arXiv Detail & Related papers (2024-03-04T11:23:40Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - Cal-SFDA: Source-Free Domain-adaptive Semantic Segmentation with
Differentiable Expected Calibration Error [50.86671887712424]
The prevalence of domain adaptive semantic segmentation has prompted concerns regarding source domain data leakage.
To circumvent the requirement for source data, source-free domain adaptation has emerged as a viable solution.
We propose a novel calibration-guided source-free domain adaptive semantic segmentation framework.
arXiv Detail & Related papers (2023-08-06T03:28:34Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Evaluating Uncertainty Calibration for Open-Set Recognition [5.8022510096020525]
Deep neural networks (DNNs) suffer from providing overconfident probabilities on out-of-distribution (OOD) data.
We evaluate popular calibration techniques for open-set conditions in a way that is distinctly different from the conventional evaluation of calibration methods on OOD data.
arXiv Detail & Related papers (2022-05-15T02:08:35Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
We show the breakdown of expected calibration error (ECE) into predicted confidence and refinement.
We highlight that regularisation based calibration only focuses on naively reducing a model's confidence.
We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the utility of a DNN by degrading its refinement.
arXiv Detail & Related papers (2021-06-17T11:04:14Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - On Calibration of Mixup Training for Deep Neural Networks [1.6242924916178283]
We argue and provide empirical evidence that, due to its fundamentals, Mixup does not necessarily improve calibration.
Our loss is inspired by Bayes decision theory and introduces a new training framework for designing losses for probabilistic modelling.
We provide state-of-the-art accuracy with consistent improvements in calibration performance.
arXiv Detail & Related papers (2020-03-22T16:54:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.