On the Variational Posterior of Dirichlet Process Deep Latent Gaussian
Mixture Models
- URL: http://arxiv.org/abs/2006.08993v2
- Date: Mon, 27 Jul 2020 12:41:05 GMT
- Title: On the Variational Posterior of Dirichlet Process Deep Latent Gaussian
Mixture Models
- Authors: Amine Echraibi (IMT Atlantique - INFO), Joachim Flocon-Cholet,
St\'ephane Gosselin, Sandrine Vaton (INFO)
- Abstract summary: We present an alternative treatment of the variational posterior of the Dirichlet Process Deep Latent Gaussian Mixture Model (DP-DLGMM)
We show that our model is capable of generating realistic samples for each cluster obtained, and manifests competitive performance in a semi-supervised setting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thanks to the reparameterization trick, deep latent Gaussian models have
shown tremendous success recently in learning latent representations. The
ability to couple them however with nonparamet-ric priors such as the Dirichlet
Process (DP) hasn't seen similar success due to its non parameteriz-able
nature. In this paper, we present an alternative treatment of the variational
posterior of the Dirichlet Process Deep Latent Gaussian Mixture Model
(DP-DLGMM), where we show that the prior cluster parameters and the variational
posteriors of the beta distributions and cluster hidden variables can be
updated in closed-form. This leads to a standard reparameterization trick on
the Gaussian latent variables knowing the cluster assignments. We demonstrate
our approach on standard benchmark datasets, we show that our model is capable
of generating realistic samples for each cluster obtained, and manifests
competitive performance in a semi-supervised setting.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations [7.439555720106548]
We propose a fully Bayesian approach that treats the kernel hyper parameters as random variables and constructs coupled differential equations (SDEs) to learn their posterior distribution and that of inducing points.
Our approach provides a time-varying, comprehensive, and realistic posterior approximation through coupling variables using SDE methods.
Our work opens up exciting research avenues for advancing Bayesian inference and offers a powerful modeling tool for continuous-time Gaussian processes.
arXiv Detail & Related papers (2024-08-12T11:41:07Z) - Uniform Transformation: Refining Latent Representation in Variational Autoencoders [7.4316292428754105]
We introduce a novel adaptable three-stage Uniform Transformation (UT) module to address irregular latent distributions.
By reconfiguring irregular distributions into a uniform distribution in the latent space, our approach significantly enhances the disentanglement and interpretability of latent representations.
Empirical evaluations demonstrated the efficacy of our proposed UT module in improving disentanglement metrics across benchmark datasets.
arXiv Detail & Related papers (2024-07-02T21:46:23Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Generalised Gaussian Process Latent Variable Models (GPLVM) with
Stochastic Variational Inference [9.468270453795409]
We study the doubly formulation of the BayesianVM model amenable with minibatch training.
We show how this framework is compatible with different latent variable formulations and perform experiments to compare a suite of models.
We demonstrate how we can train in the presence of massively missing data and obtain high-fidelity reconstructions.
arXiv Detail & Related papers (2022-02-25T21:21:51Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
We introduce score-based generative models (SGMs) demonstrating remarkable empirical performance.
Current SGMs make the underlying assumption that the data is supported on a Euclidean manifold with flat geometry.
This prevents the use of these models for applications in robotics, geoscience or protein modeling.
arXiv Detail & Related papers (2022-02-06T11:57:39Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z) - Oops I Took A Gradient: Scalable Sampling for Discrete Distributions [53.3142984019796]
We show that this approach outperforms generic samplers in a number of difficult settings.
We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data.
arXiv Detail & Related papers (2021-02-08T20:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.