論文の概要: Debona: Decoupled Boundary Network Analysis for Tighter Bounds and
Faster Adversarial Robustness Proofs
- arxiv url: http://arxiv.org/abs/2006.09040v2
- Date: Tue, 2 Feb 2021 16:53:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 18:44:10.908883
- Title: Debona: Decoupled Boundary Network Analysis for Tighter Bounds and
Faster Adversarial Robustness Proofs
- Title(参考訳): Debona: より密接な境界と高速な対向ロバスト性証明のための分離境界ネットワーク解析
- Authors: Christopher Brix, Thomas Noll
- Abstract要約: ニューラルネットワークは、安全クリティカルな現実世界のアプリケーションで一般的に使用される。
このような敵の例が存在しないこと、あるいは具体的な例を提供することは、安全なアプリケーションを保証するために不可欠である。
畳み込みネットワークにおける最大プーリング層上層と下層の境界の厳密な証明を行う。
- 参考スコア(独自算出の注目度): 2.1320960069210484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are commonly used in safety-critical real-world applications.
Unfortunately, the predicted output is often highly sensitive to small, and
possibly imperceptible, changes to the input data. Proving that either no such
adversarial examples exist, or providing a concrete instance, is therefore
crucial to ensure safe applications. As enumerating and testing all potential
adversarial examples is computationally infeasible, verification techniques
have been developed to provide mathematically sound proofs of their absence
using overestimations of the network activations. We propose an improved
technique for computing tight upper and lower bounds of these node values,
based on increased flexibility gained by computing both bounds independently of
each other. Furthermore, we gain an additional improvement by re-implementing
part of the original state-of-the-art software "Neurify", leading to a faster
analysis. Combined, these adaptations reduce the necessary runtime by up to
94%, and allow a successful search for networks and inputs that were previously
too complex. We provide proofs for tight upper and lower bounds on max-pooling
layers in convolutional networks. To ensure widespread usability, we open
source our implementation "Debona", featuring both the implementation specific
enhancements as well as the refined boundary computation for faster and more
exact~results.
- Abstract(参考訳): ニューラルネットワークは、安全クリティカルな現実世界のアプリケーションで一般的に使用される。
残念なことに、予測された出力は、しばしば入力データの変更に対して非常に敏感である。
このような敵の例が存在しないこと、あるいは具体的な例を提供することは、安全なアプリケーションを保証するために不可欠である。
全ての潜在的な敵の例を列挙し、検証することは、計算的に不可能であるので、ネットワークアクティベーションの過大評価を用いて、不在の数学的に健全な証明を提供するための検証技術が開発されている。
本稿では,これらのノード値の上限値と下限値の密接な計算を行うための改良手法を提案する。
さらに,従来の最先端ソフトウェアである"Neurify"の一部を再実装することで,より高速な解析が可能になった。
これらの適応を組み合わせることで、必要なランタイムを最大94%削減し、以前は複雑すぎたネットワークや入力の検索に成功した。
畳み込みネットワークにおける最大プーリング層上の上下境界の厳密な証明を行う。
広汎なユーザビリティを確保するため,実装固有の拡張に加えて,より高速かつ正確な境界計算も備えた実装"Debona"をオープンソース化した。
関連論文リスト
- Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Provably Tightest Linear Approximation for Robustness Verification of
Sigmoid-like Neural Networks [22.239149433169747]
ディープニューラルネットワークの堅牢性は、現代のAI対応システムにとって不可欠である。
非線形性のため、Sigmoidのようなニューラルネットワークは広範囲のアプリケーションで採用されている。
論文 参考訳(メタデータ) (2022-08-21T12:07:36Z) - On Optimizing Back-Substitution Methods for Neural Network Verification [1.4394939014120451]
本稿では, 後方置換がより厳密な境界を生じさせるアプローチを提案する。
我々の技術は、多くの既存のシンボル境界伝搬技術に統合できるという意味で、一般的なものである。
論文 参考訳(メタデータ) (2022-08-16T11:16:44Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Complete Verification via Multi-Neuron Relaxation Guided
Branch-and-Bound [2.896192909215469]
両パラダイムの強みを組み合わせた新しい完全検証器を提案する。
BaBプロセス中に生成されるサブプロブレムの数を劇的に減少させるために、マルチニューロン緩和を用いる。
評価の結果,既存のベンチマークと,従来考えられていたよりもはるかに高い精度のネットワークにおいて,検証が新たな最先端性を達成できることが確認された。
論文 参考訳(メタデータ) (2022-04-30T13:12:33Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
本稿では,ネットワークアクティベーションの総数にのみ線形なメモリを必要とする一階二重SDPアルゴリズムを提案する。
L-inf の精度は 1% から 88% ,6% から 40% に改善した。
また,変分オートエンコーダの復号器に対する2次安定性仕様の厳密な検証を行った。
論文 参考訳(メタデータ) (2020-10-22T12:32:29Z) - Global Optimization of Objective Functions Represented by ReLU Networks [77.55969359556032]
ニューラルネットワークは複雑で非敵対的な関数を学ぶことができ、安全クリティカルな文脈でそれらの正しい振る舞いを保証することは困難である。
ネットワーク内の障害を見つけるための多くのアプローチ(例えば、敵の例)があるが、これらは障害の欠如を保証できない。
本稿では,最適化プロセスを検証手順に統合し,本手法よりも優れた性能を実現する手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T08:19:48Z) - PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier [1.1011268090482575]
我々は、ReLU NNの最も一般的な安全仕様を正式に検証するための新しいアプローチを導入する。
我々は, 線形実現可能性チェッカーとしてだけでなく, 解法で許容される緩和量のペナルティ化の手段として, 凸解法を用いる。
論文 参考訳(メタデータ) (2020-06-18T21:33:07Z) - ReluDiff: Differential Verification of Deep Neural Networks [8.601847909798165]
我々は2つの密接に関連するネットワークの差分検証法を開発した。
我々は2つのネットワークの構造的および行動的類似性を利用して、2つのネットワークの出力ニューロン間の差異をより正確に拘束する。
実験の結果,最先端の検証ツールと比較して,精度向上が可能であることがわかった。
論文 参考訳(メタデータ) (2020-01-10T20:47:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。