論文の概要: Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks
- arxiv url: http://arxiv.org/abs/2204.00187v1
- Date: Fri, 1 Apr 2022 03:31:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-04 15:16:24.249486
- Title: Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks
- Title(参考訳): ロバスト入射ニューラルネットワークとフィードフォワードニューラルネットワークの時間的到達性の比較解析
- Authors: Alexander Davydov, Saber Jafarpour, Matthew Abate, Francesco Bullo,
Samuel Coogan
- Abstract要約: 我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
- 参考スコア(独自算出の注目度): 64.23331120621118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use interval reachability analysis to obtain robustness guarantees for
implicit neural networks (INNs). INNs are a class of implicit learning models
that use implicit equations as layers and have been shown to exhibit several
notable benefits over traditional deep neural networks. We first establish that
tight inclusion functions of neural networks, which provide the tightest
rectangular over-approximation of an input-output map, lead to sharper
robustness guarantees than the well-studied robustness measures of local
Lipschitz constants. Like Lipschitz constants, tight inclusions functions are
computationally challenging to obtain, and we thus propose using mixed
monotonicity and contraction theory to obtain computationally efficient
estimates of tight inclusion functions for INNs. We show that our approach
performs at least as well as, and generally better than, applying
state-of-the-art interval bound propagation methods to INNs. We design a novel
optimization problem for training robust INNs and we provide empirical evidence
that suitably-trained INNs can be more robust than comparably-trained
feedforward networks.
- Abstract(参考訳): 我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは、暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスであり、従来のディープニューラルネットワークよりもいくつかの顕著な利点を示すことが示されている。
まず、入力出力マップの最も厳密な長方形オーバー近似を提供するニューラルネットワークの厳密な包摂関数が、局所リプシッツ定数のよく研究された頑健性測定よりも強固性保証をもたらすことを確かめる。
リプシッツ定数と同様に、密包摂関数は計算的に取得が困難であり、INNに対する密包摂関数の計算効率の良い推定値を得るために混合単調性と縮合理論を用いる。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には優れていることを示す。
我々は、ロバスト INN をトレーニングするための新しい最適化問題を設計し、適切にトレーニングされた INN がフィードフォワードネットワークよりも堅牢であることを示す実証的な証拠を提供する。
関連論文リスト
- RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
スパイキングニューラルネットワーク(SNN)は、そのユニークな神経力学と低出力の性質により、広く注目を集めている。
以前の研究では、Poissonコーディングを持つSNNは、小規模データセット上のArtificial Neural Networks(ANN)よりも堅牢であることが実証されている。
この研究は理論上、SNNの固有の対向ロバスト性はポアソン符号に由来することを証明している。
論文 参考訳(メタデータ) (2024-07-29T15:26:15Z) - Efficient kernel surrogates for neural network-based regression [0.8030359871216615]
ニューラルタンジェントカーネル(NTK)の効率的な近似である共役カーネル(CK)の性能について検討する。
CK性能がNTKよりもわずかに劣っていることを示し、特定の場合において、CK性能が優れていることを示す。
NTKの代わりにCKを使用するための理論的基盤を提供するだけでなく,DNNの精度を安価に向上するためのレシピを提案する。
論文 参考訳(メタデータ) (2023-10-28T06:41:47Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
論理ニューラルネットワーク(LNN)と呼ばれる最近のニューラルシンボリックフレームワークは、ニューラルネットワークとシンボリックロジックの両方のキープロパティを同時に提供することができる。
外部知識ソースからのモデルフリー強化学習を可能にする統合手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T12:34:59Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Interval Neural Networks: Uncertainty Scores [11.74565957328407]
我々は、事前訓練された深層ニューラルネットワーク(DNN)の出力における不確実性スコアを生成する高速で非ベイズ的手法を提案する。
このインターバルニューラルネットワーク(INN)は、インターバル値パラメータを持ち、インターバル演算を用いてその入力を伝搬する。
画像再構成タスクの数値実験において,予測誤差の代用としてINNの実用性を実証する。
論文 参考訳(メタデータ) (2020-03-25T18:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。