Multi-Agent Reinforcement Learning for Adaptive User Association in
Dynamic mmWave Networks
- URL: http://arxiv.org/abs/2006.09066v1
- Date: Tue, 16 Jun 2020 10:51:27 GMT
- Title: Multi-Agent Reinforcement Learning for Adaptive User Association in
Dynamic mmWave Networks
- Authors: Mohamed Sana, Antonio De Domenico, Wei Yu, Yves Lostanlen, and Emilio
Calvanese Strinati
- Abstract summary: We propose a scalable and flexible algorithm for user association based on multi-agent reinforcement learning.
Users act as independent agents that, based on their local observations only, learn to autonomously coordinate their actions in order to optimize the network sum-rate.
Simulation results show that the proposed algorithm is able to adapt to (fast) changes of radio environment, thus providing large sum-rate gain in comparison to state-of-the-art solutions.
- Score: 17.295158818748188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network densification and millimeter-wave technologies are key enablers to
fulfill the capacity and data rate requirements of the fifth generation (5G) of
mobile networks. In this context, designing low-complexity policies with local
observations, yet able to adapt the user association with respect to the global
network state and to the network dynamics is a challenge. In fact, the
frameworks proposed in literature require continuous access to global network
information and to recompute the association when the radio environment
changes. With the complexity associated to such an approach, these solutions
are not well suited to dense 5G networks. In this paper, we address this issue
by designing a scalable and flexible algorithm for user association based on
multi-agent reinforcement learning. In this approach, users act as independent
agents that, based on their local observations only, learn to autonomously
coordinate their actions in order to optimize the network sum-rate. Since there
is no direct information exchange among the agents, we also limit the signaling
overhead. Simulation results show that the proposed algorithm is able to adapt
to (fast) changes of radio environment, thus providing large sum-rate gain in
comparison to state-of-the-art solutions.
Related papers
- Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed Submodular Approach for Simultaneous Coordination and Network Design [3.5527561584422465]
We present AlterNAting COordination and Network-Design Algorithm (Anaconda)
Anaconda is a scalable algorithm that also enjoys near-optimality guarantees.
We demonstrate in simulated scenarios of area monitoring and compare it with a state-of-the-art algorithm.
arXiv Detail & Related papers (2024-09-02T18:11:33Z) - Joint User Pairing and Beamforming Design of Multi-STAR-RISs-Aided NOMA
in the Indoor Environment via Multi-Agent Reinforcement Learning [15.95700167294255]
NOMA allows multiple users to share the same resources, which improves the spectral efficiency of the system.
STAR-RISs can achieve improved coverage, increased spectral efficiency, and enhanced communication reliability.
However, STAR-RISs must simultaneously optimize the amplitude and phase shift corresponding to reflection and transmission.
arXiv Detail & Related papers (2023-11-15T05:18:36Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Federated Meta-Learning for Traffic Steering in O-RAN [1.400970992993106]
We propose an algorithm for RAT allocation based on federated meta-learning (FML)
We have designed a simulation environment which contains LTE and 5G NR service technologies.
arXiv Detail & Related papers (2022-09-13T10:39:41Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Competing Adaptive Networks [56.56653763124104]
We develop an algorithm for decentralized competition among teams of adaptive agents.
We present an application in the decentralized training of generative adversarial neural networks.
arXiv Detail & Related papers (2021-03-29T14:42:15Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - Deep Reinforcement Learning for Adaptive Network Slicing in 5G for
Intelligent Vehicular Systems and Smart Cities [19.723551683930776]
We develop a network slicing model based on a cluster of fog nodes (FNs) coordinated with an edge controller (EC)
For each service request in a cluster, the EC decides which FN to execute the task, locally serve the request at the edge, or to reject the task and refer it to the cloud.
We propose a deep reinforcement learning (DRL) solution to adaptively learn the optimal slicing policy.
arXiv Detail & Related papers (2020-10-19T23:30:08Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
Machine learning (ML) is a promising enabler for the fifth generation (5G) communication systems and beyond.
This article aims to provide a holistic overview of relevant communication and ML principles, and thereby present communication-efficient and distributed learning frameworks with selected use cases.
arXiv Detail & Related papers (2020-08-06T12:37:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.