Minimizing estimation runtime on noisy quantum computers
- URL: http://arxiv.org/abs/2006.09350v4
- Date: Sat, 20 Mar 2021 21:25:01 GMT
- Title: Minimizing estimation runtime on noisy quantum computers
- Authors: Guoming Wang, Dax Enshan Koh, Peter D. Johnson, Yudong Cao
- Abstract summary: "engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The number of measurements demanded by hybrid quantum-classical algorithms
such as the variational quantum eigensolver (VQE) is prohibitively high for
many problems of practical value. For such problems, realizing quantum
advantage will require methods which dramatically reduce this cost. Previous
quantum algorithms that reduce the measurement cost (e.g. quantum amplitude and
phase estimation) require error rates that are too low for near-term
implementation. Here we propose methods that take advantage of the available
quantum coherence to maximally enhance the power of sampling on noisy quantum
devices, reducing measurement number and runtime compared to the standard
sampling method of the variational quantum eigensolver (VQE). Our scheme
derives inspiration from quantum metrology, phase estimation, and the more
recent "alpha-VQE" proposal, arriving at a general formulation that is robust
to error and does not require ancilla qubits. The central object of this method
is what we call the "engineered likelihood function" (ELF), used for carrying
out Bayesian inference. We show how the ELF formalism enhances the rate of
information gain in sampling as the physical hardware transitions from the
regime of noisy intermediate-scale quantum computers into that of quantum error
corrected ones. This technique speeds up a central component of many quantum
algorithms, with applications including chemistry, materials, finance, and
beyond. Similar to VQE, we expect small-scale implementations to be realizable
on today's quantum devices.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Improving the speed of variational quantum algorithms for quantum error
correction [7.608765913950182]
We consider the problem of devising a suitable Quantum Error Correction (QEC) procedures for a generic quantum noise acting on a quantum circuit.
In general, there is no analytic universal procedure to obtain the encoding and correction unitary gates.
We address this problem using a cost function based on the Quantum Wasserstein distance of order 1.
arXiv Detail & Related papers (2023-01-12T19:44:53Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum Error Mitigation via Quantum-Noise-Effect Circuit Groups [0.0]
Near-term quantum computers are fragile against quantum noise effects.
Traditional quantum-error-correcting codes are not implemented on such devices.
We propose quantum error mitigation (QEM) scheme for quantum computational errors.
arXiv Detail & Related papers (2022-05-27T11:21:35Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Reducing runtime and error in VQE using deeper and noisier quantum
circuits [0.0]
A core of many quantum algorithms including VQE, can be improved in terms of precision and accuracy by using a technique we call Robust Amplitude Estimation.
By using deeper, and therefore more error-prone, quantum circuits, we realize more accurate quantum computations in less time.
This technique may be used to speed up quantum computations into the regime of early fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-10-20T17:11:29Z) - Neural Error Mitigation of Near-Term Quantum Simulations [0.0]
We introduce $textitneural error mitigation$, a novel method that uses neural networks to improve estimates of ground states and ground-state observables.
Our results show that neural error mitigation improves the numerical and experimental VQE computation to yield low-energy errors.
Our method is a promising strategy for extending the reach of near-term quantum computers to solve complex quantum simulation problems.
arXiv Detail & Related papers (2021-05-17T18:00:57Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.