Post-Variational Ground State Estimation via QPE-Based Quantum Imaginary Time Evolution
- URL: http://arxiv.org/abs/2504.11549v1
- Date: Tue, 15 Apr 2025 18:44:14 GMT
- Title: Post-Variational Ground State Estimation via QPE-Based Quantum Imaginary Time Evolution
- Authors: Nora Bauer, George Siopsis,
- Abstract summary: We present the QPE-based quantum imaginary time evolution (QPE-QITE) algorithm, designed for post-variational ground state estimation.<n>Unlike variational methods, QPE-QITE employs additional ancillae to project the quantum register into low-energy eigenstates.<n>We demonstrate the capabilities of QPE-QITE by applying it to the low-autocorrelation binary sequences (LABS) problem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum phase estimation (QPE) plays a pivotal role in many quantum algorithms, offering provable speedups in applications such as Shor's factoring algorithm. While fault-tolerant quantum algorithms for combinatorial and Hamiltonian optimization often integrate QPE with variational protocols-like the quantum approximate optimization Ansatz or variational quantum eigensolver-these approaches typically rely on heuristic techniques requiring parameter optimization. In this work, we present the QPE-based quantum imaginary time evolution (QPE-QITE) algorithm, designed for post-variational ground state estimation on fault-tolerant quantum computers. Unlike variational methods, QPE-QITE employs additional ancillae to project the quantum register into low-energy eigenstates, eliminating the need for parameter optimization. We demonstrate the capabilities of QPE-QITE by applying it to the low-autocorrelation binary sequences (LABS) problem, which is a higher order optimization problem that has been studied in the context of quantum scaling advantage. Scaling estimates for magic state requirements are provided to assess the feasibility of addressing these problems on near-term fault-tolerant devices, establishing a benchmark for quantum advantage. Moreover, we discuss potential implementations of QPE-QITE on existing quantum hardware as a precursor to fault tolerance.
Related papers
- Enhancing variational quantum algorithms by balancing training on classical and quantum hardware [1.8377902806196762]
Variational quantum algorithms (VQAs) have the potential to provide a near-term route to quantum utility or advantage.<n>VQAs have been proposed for a multitude of tasks such as ground-state estimation.<n>There remain major challenges in its trainability and resource costs on quantum hardware.
arXiv Detail & Related papers (2025-03-20T17:17:58Z) - Non-Variational Quantum Random Access Optimization with Alternating Operator Ansatz [3.5773675235837974]
Quantum Random Access Optimization (QRAO) has been proposed to reduce the space requirements of quantum optimization.
We show that instance-independent 'fixed' parameters achieve good performance, removing the need for variational parameter optimization.
Our results pave the way for the practical execution of QRAO on early fault-tolerant quantum computers.
arXiv Detail & Related papers (2025-02-06T18:25:31Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
Variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical algorithm for quantum computers.
We propose classically-optimized VQE (co-VQE), where the whole process of the optimization is efficiently conducted on a classical computer.
In co-VQE, we only use quantum computers to measure nonlocal quantities after the parameters are optimized.
arXiv Detail & Related papers (2022-02-07T02:26:58Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Error mitigation in variational quantum eigensolvers using tailored
probabilistic machine learning [5.630204194930539]
We present a novel method that employs parametric Gaussian process regression (GPR) within an active learning framework to mitigate noise in quantum computations.
We demonstrate the effectiveness of our method on a 2-site Anderson impurity model and a 8-site Heisenberg model, using the IBM open-source quantum computing framework, Qiskit.
arXiv Detail & Related papers (2021-11-16T22:29:43Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.