Agent Modelling under Partial Observability for Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2006.09447v4
- Date: Tue, 9 Nov 2021 10:37:18 GMT
- Title: Agent Modelling under Partial Observability for Deep Reinforcement
Learning
- Authors: Georgios Papoudakis, Filippos Christianos, Stefano V. Albrecht
- Abstract summary: Existing methods for agent modelling assume knowledge of the local observations and chosen actions of the modelled agents during execution.
We learn to extract representations about the modelled agents conditioned only on the local observations of the controlled agent.
The representations are used to augment the controlled agent's decision policy which is trained via deep reinforcement learning.
- Score: 12.903487594031276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modelling the behaviours of other agents is essential for understanding how
agents interact and making effective decisions. Existing methods for agent
modelling commonly assume knowledge of the local observations and chosen
actions of the modelled agents during execution. To eliminate this assumption,
we extract representations from the local information of the controlled agent
using encoder-decoder architectures. Using the observations and actions of the
modelled agents during training, our models learn to extract representations
about the modelled agents conditioned only on the local observations of the
controlled agent. The representations are used to augment the controlled
agent's decision policy which is trained via deep reinforcement learning; thus,
during execution, the policy does not require access to other agents'
information. We provide a comprehensive evaluation and ablations studies in
cooperative, competitive and mixed multi-agent environments, showing that our
method achieves higher returns than baseline methods which do not use the
learned representations.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Contrastive learning-based agent modeling for deep reinforcement
learning [31.293496061727932]
Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems.
We devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution.
CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode.
arXiv Detail & Related papers (2023-12-30T03:44:12Z) - Fact-based Agent modeling for Multi-Agent Reinforcement Learning [6.431977627644292]
Fact-based Agent modeling (FAM) method is proposed in which fact-based belief inference (FBI) network models other agents in partially observable environment only based on its local information.
We evaluate FAM on various Multiagent Particle Environment (MPE) and compare the results with several state-of-the-art MARL algorithms.
arXiv Detail & Related papers (2023-10-18T19:43:38Z) - Toward a Reasoning and Learning Architecture for Ad Hoc Teamwork [4.454557728745761]
We present an architecture for ad hoc teamwork, which refers to collaboration in a team of agents without prior coordination.
Our architecture combines the principles of knowledge-based and data-driven reasoning and learning.
We use the benchmark simulated multiagent collaboration domain Fort Attack to demonstrate that our architecture supports adaptation to unforeseen changes.
arXiv Detail & Related papers (2022-08-24T13:57:33Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - Deep Interactive Bayesian Reinforcement Learning via Meta-Learning [63.96201773395921]
The optimal adaptive behaviour under uncertainty over the other agents' strategies can be computed using the Interactive Bayesian Reinforcement Learning framework.
We propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior.
We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment.
arXiv Detail & Related papers (2021-01-11T13:25:13Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Variational Autoencoders for Opponent Modeling in Multi-Agent Systems [9.405879323049659]
Multi-agent systems exhibit complex behaviors that emanate from the interactions of multiple agents in a shared environment.
In this work, we are interested in controlling one agent in a multi-agent system and successfully learn to interact with the other agents that have fixed policies.
Modeling the behavior of other agents (opponents) is essential in understanding the interactions of the agents in the system.
arXiv Detail & Related papers (2020-01-29T13:38:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.