論文の概要: A generalizable saliency map-based interpretation of model outcome
- arxiv url: http://arxiv.org/abs/2006.09504v2
- Date: Fri, 19 Jun 2020 04:51:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 19:55:43.650354
- Title: A generalizable saliency map-based interpretation of model outcome
- Title(参考訳): 一般化可能なサリエンシマップに基づくモデル結果の解釈
- Authors: Shailja Thakur, Sebastian Fischmeister
- Abstract要約: そこで本研究では,モデルの入力と出力を用いてサリエンシマップを生成する非侵襲的解釈可能性手法を提案する。
実験の結果,本手法は入力の正解部分を89%の精度で再現可能であることがわかった。
- 参考スコア(独自算出の注目度): 1.14219428942199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the significant challenges of deep neural networks is that the complex
nature of the network prevents human comprehension of the outcome of the
network. Consequently, the applicability of complex machine learning models is
limited in the safety-critical domains, which incurs risk to life and property.
To fully exploit the capabilities of complex neural networks, we propose a
non-intrusive interpretability technique that uses the input and output of the
model to generate a saliency map. The method works by empirically optimizing a
randomly initialized input mask by localizing and weighing individual pixels
according to their sensitivity towards the target class. Our experiments show
that the proposed model interpretability approach performs better than the
existing saliency map-based approaches methods at localizing the relevant input
pixels.
Furthermore, to obtain a global perspective on the target-specific
explanation, we propose a saliency map reconstruction approach to generate
acceptable variations of the salient inputs from the space of input data
distribution for which the model outcome remains unaltered. Experiments show
that our interpretability method can reconstruct the salient part of the input
with a classification accuracy of 89%.
- Abstract(参考訳): ディープニューラルネットワークの重要な課題の1つは、ネットワークの複雑な性質がネットワークの結果の人間の理解を妨げることである。
したがって、複雑な機械学習モデルの適用性は、生命と特性のリスクを負う安全クリティカルな領域に制限される。
複雑なニューラルネットワークの能力をフル活用するために,モデルの入力と出力を用いてサリエンシマップを生成する非侵襲的解釈可能性手法を提案する。
この方法は、ターゲットクラスに対する感度に応じて個々の画素をローカライズして重み付けすることにより、ランダムに初期化された入力マスクを実証的に最適化する。
実験の結果,提案手法は,既存のsaliency map-based approach法よりも,関連する入力画素の局所化に優れることがわかった。
さらに,対象特定説明のグローバルな視点を得るため,モデル結果が未変更のままである入力データ分布の空間から,有意な入力の許容可能なバリエーションを生成するために,サリエンシマップ再構築手法を提案する。
実験の結果,本手法は89%の精度で入力の有意な部分を再構成できることがわかった。
関連論文リスト
- Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Fidelity of Interpretability Methods and Perturbation Artifacts in
Neural Networks [5.439020425819001]
ポストホック解釈可能性法は,クラス確率に対する入力特徴の重要性を定量化することを目的としている。
解釈可能性評価手法の一般的なアプローチは、与えられた予測に重要な入力特徴を摂動させ、精度の低下を観測することである。
摂動入力特徴量からモデル精度曲線を利用して,そのようなアーチファクトが忠実度推定に与える影響を推定する手法を提案する。
論文 参考訳(メタデータ) (2022-03-06T10:14:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Bayesian Attention Belief Networks [59.183311769616466]
注意に基づくニューラルネットワークは、幅広いタスクにおいて最先端の結果を得た。
本稿では,非正規化注意重みをモデル化してデコーダネットワークを構築するベイズ的注意信念ネットワークについて紹介する。
提案手法は, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃において, 決定論的注意と最先端の注意よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-09T17:46:22Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Building Reliable Explanations of Unreliable Neural Networks: Locally
Smoothing Perspective of Model Interpretation [0.0]
本稿では,ニューラルネットワークの予測を確実に説明するための新しい手法を提案する。
本手法は,モデル予測の損失関数における平滑な景観の仮定に基づいて構築される。
論文 参考訳(メタデータ) (2021-03-26T08:52:11Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Generate and Verify: Semantically Meaningful Formal Analysis of Neural
Network Perception Systems [2.2559617939136505]
ニューラルネットワーク認識システムの精度を評価するためにテストが続けられている。
我々は、モデルが常に基底真理に結びついたある誤差内で推定を生成することを証明するために、ニューラルネットワークの検証を用いる。
論文 参考訳(メタデータ) (2020-12-16T23:09:53Z) - Assessing the Reliability of Visual Explanations of Deep Models with
Adversarial Perturbations [15.067369314723958]
本稿では,深層モデルの説明の信頼性を評価するための客観的尺度を提案する。
提案手法は,入力画像の逆方向の摂動によるネットワーク結果の変化に基づく。
我々はまた,本質的な説明を損なうことなく,より解釈可能な地図を創出し,関連性マップのクリーン化へのアプローチの直接的な適用を提案する。
論文 参考訳(メタデータ) (2020-04-22T19:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。