COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle using
Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2006.09540v1
- Date: Tue, 16 Jun 2020 22:05:58 GMT
- Title: COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle using
Deep Reinforcement Learning
- Authors: Eivind Meyer and Amalie Heiberg and Adil Rasheed and Omer San
- Abstract summary: Path Following and Collision Avoidance, be it for unmanned surface vessels or other autonomous vehicles, are two fundamental guidance problems in robotics.
In this article, we explore the potential of Proximal Policy Optimization (PPO), a DRL algorithm with demonstrated state-of-the-art performance on Continuous Control tasks.
Based on high-fidelity elevation and AIS tracking data from the Trondheim Fjord, an inlet of the Norwegian sea, we evaluate the trained agent's performance in challenging, dynamic real-world scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Path Following and Collision Avoidance, be it for unmanned surface vessels or
other autonomous vehicles, are two fundamental guidance problems in robotics.
For many decades, they have been subject to academic study, leading to a vast
number of proposed approaches. However, they have mostly been treated as
separate problems, and have typically relied on non-linear first-principles
models with parameters that can only be determined experimentally. The rise of
Deep Reinforcement Learning (DRL) in recent years suggests an alternative
approach: end-to-end learning of the optimal guidance policy from scratch by
means of a trial-and-error based approach. In this article, we explore the
potential of Proximal Policy Optimization (PPO), a DRL algorithm with
demonstrated state-of-the-art performance on Continuous Control tasks, when
applied to the dual-objective problem of controlling an underactuated
Autonomous Surface Vehicle in a COLREGs compliant manner such that it follows
an a priori known desired path while avoiding collisions with other vessels
along the way. Based on high-fidelity elevation and AIS tracking data from the
Trondheim Fjord, an inlet of the Norwegian sea, we evaluate the trained agent's
performance in challenging, dynamic real-world scenarios where the ultimate
success of the agent rests upon its ability to navigate non-uniform marine
terrain while handling challenging, but realistic vessel encounters.
Related papers
- Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance [0.0]
Deep Reinforcement Learning (DRL) has emerged as a promising control framework.
Current DRL algorithms require disproportionally large computational resources to find near-optimal policies.
This paper presents a comprehensive exploration of our proposed approach in maritime control systems.
arXiv Detail & Related papers (2024-03-31T09:25:28Z) - Towards Deviation-Robust Agent Navigation via Perturbation-Aware
Contrastive Learning [125.61772424068903]
Vision-and-language navigation (VLN) asks an agent to follow a given language instruction to navigate through a real 3D environment.
We present a model-agnostic training paradigm, called Progressive Perturbation-aware Contrastive Learning (PROPER) to enhance the generalization ability of existing VLN agents.
arXiv Detail & Related papers (2024-03-09T02:34:13Z) - Two-step dynamic obstacle avoidance [0.0]
This paper proposes a two-step architecture for handling dynamic obstacle avoidance (DOA) tasks by combining supervised and reinforcement learning (RL)
In the first step, we introduce a data-driven approach to estimate the collision risk (CR) of an obstacle using a recurrent neural network.
In the second step, we include these CR estimates into the observation space of an RL agent to increase its situational awareness.
arXiv Detail & Related papers (2023-11-28T14:55:50Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRL is a framework for solving sequential decision-making problems.
It exploits the combination of reinforcement learning and latent variable generative models.
We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training.
arXiv Detail & Related papers (2022-04-18T22:02:32Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Risk-based implementation of COLREGs for autonomous surface vehicles
using deep reinforcement learning [1.304892050913381]
Deep reinforcement learning (DRL) has shown great potential for a wide range of applications.
In this work, a subset of the International Regulations for Preventing Collisions at Sea (COLREGs) is incorporated into a DRL-based path following and obstacle avoidance system.
The resulting autonomous agent dynamically interpolates between path following and COLREG-compliant collision avoidance in the training scenario, isolated encounter situations, and AIS-based simulations of real-world scenarios.
arXiv Detail & Related papers (2021-11-30T21:32:59Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - Deep Reinforcement Learning Controller for 3D Path-following and
Collision Avoidance by Autonomous Underwater Vehicles [0.0]
In complex systems, such as autonomous underwater vehicles, decision making becomes non-trivial.
We propose a solution using state-of-the-art Deep Reinforcement Learning (DRL) techniques.
Our results demonstrate the viability of DRL in path-following and avoiding collisions toward achieving human-level decision making in autonomous vehicle systems.
arXiv Detail & Related papers (2020-06-17T11:54:53Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability.
Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology.
Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions.
arXiv Detail & Related papers (2020-03-23T12:58:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.