Two-step dynamic obstacle avoidance
- URL: http://arxiv.org/abs/2311.16841v2
- Date: Mon, 19 Aug 2024 08:04:16 GMT
- Title: Two-step dynamic obstacle avoidance
- Authors: Fabian Hart, Martin Waltz, Ostap Okhrin,
- Abstract summary: This paper proposes a two-step architecture for handling dynamic obstacle avoidance (DOA) tasks by combining supervised and reinforcement learning (RL)
In the first step, we introduce a data-driven approach to estimate the collision risk (CR) of an obstacle using a recurrent neural network.
In the second step, we include these CR estimates into the observation space of an RL agent to increase its situational awareness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic obstacle avoidance (DOA) is a fundamental challenge for any autonomous vehicle, independent of whether it operates in sea, air, or land. This paper proposes a two-step architecture for handling DOA tasks by combining supervised and reinforcement learning (RL). In the first step, we introduce a data-driven approach to estimate the collision risk (CR) of an obstacle using a recurrent neural network, which is trained in a supervised fashion and offers robustness to non-linear obstacle movements. In the second step, we include these CR estimates into the observation space of an RL agent to increase its situational awareness. We illustrate the power of our two-step approach by training different RL agents in a challenging environment that requires to navigate amid multiple obstacles. The non-linear movements of obstacles are exemplarily modeled based on stochastic processes and periodic patterns, although our architecture is suitable for any obstacle dynamics. The experiments reveal that integrating our CR metrics into the observation space doubles the performance in terms of reward, which is equivalent to halving the number of collisions in the considered environment. We also perform a generalization experiment to validate the proposal in an RL environment based on maritime traffic and real-world vessel trajectory data. Furthermore, we show that the architecture's performance improvement is independent of the applied RL algorithm.
Related papers
- Model-Based Reinforcement Learning for Control of Strongly-Disturbed Unsteady Aerodynamic Flows [0.0]
We propose a model-based reinforcement learning (MBRL) approach by incorporating a novel reduced-order model as a surrogate for the full environment.
The robustness and generalizability of the model is demonstrated in two distinct flow environments.
We demonstrate that the policy learned in the reduced-order environment translates to an effective control strategy in the full CFD environment.
arXiv Detail & Related papers (2024-08-26T23:21:44Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance [0.0]
Deep Reinforcement Learning (DRL) has emerged as a promising control framework.
Current DRL algorithms require disproportionally large computational resources to find near-optimal policies.
This paper presents a comprehensive exploration of our proposed approach in maritime control systems.
arXiv Detail & Related papers (2024-03-31T09:25:28Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Continuous Trajectory Generation Based on Two-Stage GAN [50.55181727145379]
We propose a novel two-stage generative adversarial framework to generate the continuous trajectory on the road network.
Specifically, we build the generator under the human mobility hypothesis of the A* algorithm to learn the human mobility behavior.
For the discriminator, we combine the sequential reward with the mobility yaw reward to enhance the effectiveness of the generator.
arXiv Detail & Related papers (2023-01-16T09:54:02Z) - Smooth Trajectory Collision Avoidance through Deep Reinforcement
Learning [0.0]
We propose several novel agent state and reward function designs to tackle two critical issues in DRL-based navigation solutions.
Our model relies on margin reward and smoothness constraints to ensure UAVs fly smoothly while greatly reducing the chance of collision.
arXiv Detail & Related papers (2022-10-12T16:27:32Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle using
Deep Reinforcement Learning [0.0]
Path Following and Collision Avoidance, be it for unmanned surface vessels or other autonomous vehicles, are two fundamental guidance problems in robotics.
In this article, we explore the potential of Proximal Policy Optimization (PPO), a DRL algorithm with demonstrated state-of-the-art performance on Continuous Control tasks.
Based on high-fidelity elevation and AIS tracking data from the Trondheim Fjord, an inlet of the Norwegian sea, we evaluate the trained agent's performance in challenging, dynamic real-world scenarios.
arXiv Detail & Related papers (2020-06-16T22:05:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.