FedCD: Improving Performance in non-IID Federated Learning
- URL: http://arxiv.org/abs/2006.09637v3
- Date: Mon, 27 Jul 2020 04:55:44 GMT
- Title: FedCD: Improving Performance in non-IID Federated Learning
- Authors: Kavya Kopparapu, Eric Lin, Jessica Zhao
- Abstract summary: Federated learning has been widely applied to enable decentralized devices, which each have their own local data, to learn a shared model.
We present a novel approach, FedCD, which clones and deletes models to dynamically group devices with similar data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has been widely applied to enable decentralized devices,
which each have their own local data, to learn a shared model. However,
learning from real-world data can be challenging, as it is rarely identically
and independently distributed (IID) across edge devices (a key assumption for
current high-performing and low-bandwidth algorithms). We present a novel
approach, FedCD, which clones and deletes models to dynamically group devices
with similar data. Experiments on the CIFAR-10 dataset show that FedCD achieves
higher accuracy and faster convergence compared to a FedAvg baseline on non-IID
data while incurring minimal computation, communication, and storage overheads.
Related papers
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
Federated learning enables edge devices to collaboratively train a global model while maintaining data privacy by keeping data localized.
We propose a novel plugin for federated optimization techniques that approximates Non-IID data distributions to IID through generative AI-enhanced data augmentation and balanced sampling strategy.
arXiv Detail & Related papers (2024-10-31T11:13:47Z) - FedSR: A Semi-Decentralized Federated Learning Algorithm for Non-IIDness in IoT System [2.040586739710704]
In the Industrial Internet of Things (IoT), a large amount of data will be generated every day.
Due to privacy and security issues, it is difficult to collect all these data together to train deep learning models.
In this paper, we combine centralized federated learning with decentralized federated learning to design a semi-decentralized cloud-edge-device hierarchical federated learning framework.
arXiv Detail & Related papers (2024-03-19T09:34:01Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - Aggregation Delayed Federated Learning [20.973999078271483]
Federated learning is a distributed machine learning paradigm where multiple data owners (clients) collaboratively train one machine learning model while keeping data on their own devices.
Studies have found performance reduction with standard federated algorithms, such as FedAvg, on non-IID data.
Many existing works on handling non-IID data adopt the same aggregation framework as FedAvg and focus on improving model updates either on the server side or on clients.
In this work, we tackle this challenge by introducing redistribution rounds that delay the aggregation. We perform experiments on multiple tasks and show that the proposed framework significantly improves the performance on non-IID
arXiv Detail & Related papers (2021-08-17T04:06:10Z) - FedMix: Approximation of Mixup under Mean Augmented Federated Learning [60.503258658382]
Federated learning (FL) allows edge devices to collectively learn a model without directly sharing data within each device.
Current state-of-the-art algorithms suffer from performance degradation as the heterogeneity of local data across clients increases.
We propose a new augmentation algorithm, named FedMix, which is inspired by a phenomenal yet simple data augmentation method, Mixup.
arXiv Detail & Related papers (2021-07-01T06:14:51Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Federated Doubly Stochastic Kernel Learning for Vertically Partitioned
Data [93.76907759950608]
We propose a doubly kernel learning algorithm for vertically partitioned data.
We show that FDSKL is significantly faster than state-of-the-art federated learning methods when dealing with kernels.
arXiv Detail & Related papers (2020-08-14T05:46:56Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Federated Visual Classification with Real-World Data Distribution [9.564468846277366]
We characterize the effect real-world data distributions have on distributed learning, using as a benchmark the standard Federated Averaging (FedAvg) algorithm.
We introduce two new large-scale datasets for species and landmark classification, with realistic per-user data splits.
We also develop two new algorithms (FedVC, FedIR) that intelligently resample and reweight over the client pool, bringing large improvements in accuracy and stability in training.
arXiv Detail & Related papers (2020-03-18T07:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.