論文の概要: LSTM Networks for Music Generation
- arxiv url: http://arxiv.org/abs/2006.09838v1
- Date: Tue, 16 Jun 2020 04:44:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 21:55:19.492646
- Title: LSTM Networks for Music Generation
- Title(参考訳): 音楽生成のためのLSTMネットワーク
- Authors: Xin Xu
- Abstract要約: LSTM(Long Short-Term Memory)に基づく音楽生成手法を提案する。
異なるネットワーク構造が音楽生成に与える影響を対比し、一部の研究者が使用した他の手法を紹介している。
- 参考スコア(独自算出の注目度): 8.663453034925363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper presents a method of the music generation based on LSTM (Long
Short-Term Memory), contrasts the effects of different network structures on
the music generation and introduces other methods used by some researchers.
- Abstract(参考訳): 本稿では,LSTM(Long Short-Term Memory)に基づく楽曲生成手法を提案する。
関連論文リスト
- MMT-BERT: Chord-aware Symbolic Music Generation Based on Multitrack Music Transformer and MusicBERT [44.204383306879095]
シンボリック・マルチトラック音楽生成に特化して設計された新しいシンボリック・ミュージック表現とジェネレーティブ・アディバーショナル・ネットワーク(GAN)フレームワークを提案する。
頑健なマルチトラック・ミュージック・ジェネレータを構築するため,事前学習したMusicBERTモデルを微調整して判別器として機能し,相対論的標準損失を取り入れた。
論文 参考訳(メタデータ) (2024-09-02T03:18:56Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Multi-view MidiVAE: Fusing Track- and Bar-view Representations for Long
Multi-track Symbolic Music Generation [50.365392018302416]
長い多トラックのシンボリック・ミュージックを効果的にモデル化・生成するVAE手法の先駆者の一つであるMulti-view MidiVAEを提案する。
我々は,ハイブリッドな変分符号化・復号化戦略を用いて,楽器の特徴と調和,および楽曲のグローバルおよびローカルな情報に焦点をあてる。
論文 参考訳(メタデータ) (2024-01-15T08:41:01Z) - MusicLDM: Enhancing Novelty in Text-to-Music Generation Using
Beat-Synchronous Mixup Strategies [32.482588500419006]
我々は,静的拡散とAudioLDMアーキテクチャを音楽領域に適応させる,最先端のテキスト・音楽モデルMusicLDMを構築した。
我々は、ビート同期オーディオミキサップとビート同期潜在ミキサップという、データ拡張のための2つの異なるミックスアップ戦略を提案する。
一般的な評価指標に加えて,CLAPスコアに基づくいくつかの新しい評価指標を設計し,提案したMusicLDMとビート同期ミックスアップ手法が生成した楽曲の品質とノベルティの両方を改善することを示す。
論文 参考訳(メタデータ) (2023-08-03T05:35:37Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Music Generation Using an LSTM [52.77024349608834]
LSTM(Long Short-Term Memory)ネットワーク構造は、シリーズの次の出力の予測に非常に有用であることが証明されている。
Recurrent Neural Networks (RNN) を用いた音楽生成手法の実証
我々は、音楽生成におけるLSTMの直感、理論、応用に関する簡単な要約を提供し、この目標を達成するのに最適なネットワークを開発し、提示し、直面する問題や課題を特定し、対処し、今後のネットワーク改善の可能性を含める。
論文 参考訳(メタデータ) (2022-03-23T00:13:41Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - Attentional networks for music generation [5.012960295592238]
メロディック構造を再構成した古いスタイルの音楽、特にJAZZを生成するための深層学習に基づく音楽生成手法を提案する。
時系列データにおける長期的依存関係のモデル化の成功とビデオの場合の成功により、注目されるBi-LSTMは、音楽生成における自然な選択と早期利用の役割を果たす。
実験では,注目されたBi-LSTMが演奏された音楽の豊かさと技術的ニュアンスを維持することができることを確認した。
論文 参考訳(メタデータ) (2020-02-06T13:26:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。