論文の概要: MMT-BERT: Chord-aware Symbolic Music Generation Based on Multitrack Music Transformer and MusicBERT
- arxiv url: http://arxiv.org/abs/2409.00919v1
- Date: Mon, 2 Sep 2024 03:18:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 08:21:03.096227
- Title: MMT-BERT: Chord-aware Symbolic Music Generation Based on Multitrack Music Transformer and MusicBERT
- Title(参考訳): MMT-BERT:Multitrack Music TransformerとMusicBERTを用いたコード認識シンボリック音楽生成
- Authors: Jinlong Zhu, Keigo Sakurai, Ren Togo, Takahiro Ogawa, Miki Haseyama,
- Abstract要約: シンボリック・マルチトラック音楽生成に特化して設計された新しいシンボリック・ミュージック表現とジェネレーティブ・アディバーショナル・ネットワーク(GAN)フレームワークを提案する。
頑健なマルチトラック・ミュージック・ジェネレータを構築するため,事前学習したMusicBERTモデルを微調整して判別器として機能し,相対論的標準損失を取り入れた。
- 参考スコア(独自算出の注目度): 44.204383306879095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel symbolic music representation and Generative Adversarial Network (GAN) framework specially designed for symbolic multitrack music generation. The main theme of symbolic music generation primarily encompasses the preprocessing of music data and the implementation of a deep learning framework. Current techniques dedicated to symbolic music generation generally encounter two significant challenges: training data's lack of information about chords and scales and the requirement of specially designed model architecture adapted to the unique format of symbolic music representation. In this paper, we solve the above problems by introducing new symbolic music representation with MusicLang chord analysis model. We propose our MMT-BERT architecture adapting to the representation. To build a robust multitrack music generator, we fine-tune a pre-trained MusicBERT model to serve as the discriminator, and incorporate relativistic standard loss. This approach, supported by the in-depth understanding of symbolic music encoded within MusicBERT, fortifies the consonance and humanity of music generated by our method. Experimental results demonstrate the effectiveness of our approach which strictly follows the state-of-the-art methods.
- Abstract(参考訳): シンボリック・マルチトラック音楽生成に特化して設計された新しいシンボリック・ミュージック表現とジェネレーティブ・アディバーショナル・ネットワーク(GAN)フレームワークを提案する。
シンボリック・ミュージック・ジェネレーションの主なテーマは、音楽データの事前処理とディープラーニング・フレームワークの実装である。
シンボリック・ミュージック・ジェネレーションに特化した現在の技術は、一般的に2つの重要な課題に直面する: 弦と音階に関する情報の不足を訓練するデータと、シンボリック・ミュージック・表現のユニークな形式に適合した特別に設計されたモデル・アーキテクチャの必要性。
本稿では,MusicLang コード解析モデルを用いた新しい記号的音楽表現を導入することで,上記の問題を解決する。
本稿では,その表現に適応したMT-BERTアーキテクチャを提案する。
頑健なマルチトラック・ミュージック・ジェネレータを構築するため,事前学習したMusicBERTモデルを微調整して判別器として機能し,相対論的標準損失を取り入れた。
このアプローチは,MusicBERT内に符号化されたシンボリック音楽の深い理解に支えられ,本手法が生み出す音楽の協和性と人間性を裏付けるものである。
実験により,最先端の手法を厳格に追従するアプローチの有効性が示された。
関連論文リスト
- MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Natural Language Processing Methods for Symbolic Music Generation and
Information Retrieval: a Survey [6.416887247454113]
シンボリック・ミュージック・ジェネレーションと情報検索研究に応用されたNLP手法について検討する。
まず,自然言語の逐次表現から適応した記号音楽の表現について概説する。
我々はこれらのモデル、特に深層学習モデルについて、異なるプリズムを通して記述し、音楽に特化されたメカニズムを強調した。
論文 参考訳(メタデータ) (2024-02-27T12:48:01Z) - The Music Meta Ontology: a flexible semantic model for the
interoperability of music metadata [0.39373541926236766]
アーティスト,作曲,演奏,録音,リンクに関連する音楽メタデータを記述するために,音楽メタオントロジーを導入する。
モデルの最初の評価、他のスキーマへのアライメント、データ変換のサポートを提供します。
論文 参考訳(メタデータ) (2023-11-07T12:35:15Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
我々は,UniversaL Evaluation(MARBLE)のための音楽音響表現ベンチマークを紹介する。
音響、パフォーマンス、スコア、ハイレベルな記述を含む4つの階層レベルを持つ包括的分類を定義することで、様々な音楽情報検索(MIR)タスクのベンチマークを提供することを目的としている。
次に、8つの公開データセット上の14のタスクに基づいて統一されたプロトコルを構築し、ベースラインとして音楽録音で開発されたすべてのオープンソース事前学習モデルの表現を公平かつ標準的に評価する。
論文 参考訳(メタデータ) (2023-06-18T12:56:46Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Symphony Generation with Permutation Invariant Language Model [57.75739773758614]
変分不変言語モデルに基づくシンフォニーネットという記号的シンフォニー音楽生成ソリューションを提案する。
シンフォニートークンの超長いシーケンスをモデル化するためのバックボーンとして、新しいトランスフォーマーデコーダアーキテクチャが導入された。
実験結果から,提案手法は人間の構成と比べ,コヒーレント,新規,複雑,調和的な交響曲を生成できることが示唆された。
論文 参考訳(メタデータ) (2022-05-10T13:08:49Z) - MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training [97.91071692716406]
シンボリック・ミュージックの理解(シンボリック・ミュージックの理解)とは、シンボリック・データから音楽を理解することを指す。
MusicBERTは、音楽理解のための大規模な事前訓練モデルである。
論文 参考訳(メタデータ) (2021-06-10T10:13:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。