Trajectory-based Algorithm Selection with Warm-starting
- URL: http://arxiv.org/abs/2204.06397v2
- Date: Tue, 7 Jun 2022 11:45:35 GMT
- Title: Trajectory-based Algorithm Selection with Warm-starting
- Authors: Anja Jankovic, Diederick Vermetten, Ana Kostovska, Jacob de Nobel,
Tome Eftimov, Carola Doerr
- Abstract summary: We study the quality and accuracy of performance regression and algorithm selection models in the scenario of predicting different algorithm performances.
We show promising performance of the trajectory-based per-run algorithm selection with warm-starting.
- Score: 2.3823600586675724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Landscape-aware algorithm selection approaches have so far mostly been
relying on landscape feature extraction as a preprocessing step, independent of
the execution of optimization algorithms in the portfolio. This introduces a
significant overhead in computational cost for many practical applications, as
features are extracted and computed via sampling and evaluating the problem
instance at hand, similarly to what the optimization algorithm would perform
anyway within its search trajectory. As suggested in Jankovic et al. (EvoAPPs
2021), trajectory-based algorithm selection circumvents the problem of costly
feature extraction by computing landscape features from points that a solver
sampled and evaluated during the optimization process. Features computed in
this manner are used to train algorithm performance regression models, upon
which a per-run algorithm selector is then built.
In this work, we apply the trajectory-based approach onto a portfolio of five
algorithms. We study the quality and accuracy of performance regression and
algorithm selection models in the scenario of predicting different algorithm
performances after a fixed budget of function evaluations. We rely on landscape
features of the problem instance computed using one portion of the
aforementioned budget of the same function evaluations. Moreover, we consider
the possibility of switching between the solvers once, which requires them to
be warm-started, i.e. when we switch, the second solver continues the
optimization process already being initialized appropriately by making use of
the information collected by the first solver. In this new context, we show
promising performance of the trajectory-based per-run algorithm selection with
warm-starting.
Related papers
- On Constructing Algorithm Portfolios in Algorithm Selection for Computationally Expensive Black-box Optimization in the Fixed-budget Setting [0.0]
This paper argues the importance of considering the number of function evaluations used in the sampling phase when constructing algorithm portfolios.
The results show that algorithm portfolios constructed by our approach perform significantly better than those by the previous approach.
arXiv Detail & Related papers (2024-05-13T03:31:13Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Per-run Algorithm Selection with Warm-starting using Trajectory-based
Features [5.073358743426584]
Per-instance algorithm selection seeks to recommend, for a given problem instance, one or several suitable algorithms.
We propose an online algorithm selection scheme which we coin per-run algorithm selection.
We show that our approach outperforms static per-instance algorithm selection.
arXiv Detail & Related papers (2022-04-20T14:30:42Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Benchmarking Feature-based Algorithm Selection Systems for Black-box
Numerical Optimization [0.0]
Feature-based algorithm selection aims to automatically find the best one from a portfolio of optimization algorithms on an unseen problem.
This paper analyzes algorithm selection systems on the 24 noiseless black-box optimization benchmarking functions.
We show that the performance of algorithm selection systems can be significantly improved by using sequential least squares programming as a pre-solver.
arXiv Detail & Related papers (2021-09-17T07:17:40Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Towards Feature-Based Performance Regression Using Trajectory Data [0.9281671380673306]
Black-box optimization is a very active area of research, with many new algorithms being developed every year.
The variety of algorithms poses a meta-problem: which algorithm to choose for a given problem at hand?
Past research has shown that per-instance algorithm selection based on exploratory landscape analysis can be an efficient mean to tackle this meta-problem.
arXiv Detail & Related papers (2021-02-10T10:19:13Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
We show that it is possible to achieve high-quality performance predictions with off-the-shelf supervised learning approaches.
We test this approach on a portfolio of very similar algorithms, which we choose from the family of modular CMA-ES algorithms.
arXiv Detail & Related papers (2020-06-17T13:34:57Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.