Directional Multivariate Ranking
- URL: http://arxiv.org/abs/2006.09978v1
- Date: Tue, 9 Jun 2020 22:43:03 GMT
- Title: Directional Multivariate Ranking
- Authors: Nan Wang, Hongning Wang
- Abstract summary: We propose a directional multi-aspect ranking criterion to enable a holistic ranking of items with respect to multiple aspects.
Our key insight is that the direction of the difference vector between two multi-aspect preference vectors reveals the pairwise order of comparison.
- Score: 39.81227580524465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: User-provided multi-aspect evaluations manifest users' detailed feedback on
the recommended items and enable fine-grained understanding of their
preferences. Extensive studies have shown that modeling such data greatly
improves the effectiveness and explainability of the recommendations. However,
as ranking is essential in recommendation, there is no principled solution yet
for collectively generating multiple item rankings over different aspects. In
this work, we propose a directional multi-aspect ranking criterion to enable a
holistic ranking of items with respect to multiple aspects. Specifically, we
view multi-aspect evaluation as an integral effort from a user that forms a
vector of his/her preferences over aspects. Our key insight is that the
direction of the difference vector between two multi-aspect preference vectors
reveals the pairwise order of comparison. Hence, it is necessary for a
multi-aspect ranking criterion to preserve the observed directions from such
pairwise comparisons. We further derive a complete solution for the
multi-aspect ranking problem based on a probabilistic multivariate tensor
factorization model. Comprehensive experimental analysis on a large TripAdvisor
multi-aspect rating dataset and a Yelp review text dataset confirms the
effectiveness of our solution.
Related papers
- Improving One-class Recommendation with Multi-tasking on Various
Preference Intensities [1.8416014644193064]
In one-class recommendation, it's required to make recommendations based on users' implicit feedback.
We propose a multi-tasking framework taking various preference intensities of each signal from implicit feedback into consideration.
Our method performs better than state-of-the-art methods by a large margin on three large-scale real-world benchmark datasets.
arXiv Detail & Related papers (2024-01-18T18:59:55Z) - Preference Inference from Demonstration in Multi-objective Multi-agent
Decision Making [0.0]
We propose an algorithm to infer linear preference weights from either optimal or near-optimal demonstrations.
Empirical results demonstrate significant improvements compared to the baseline algorithms.
In future work, we plan to evaluate the algorithm's effectiveness in a multi-agent system.
arXiv Detail & Related papers (2023-04-27T12:19:28Z) - Disentangled Representation for Diversified Recommendations [41.477162048806434]
Accuracy and diversity have long been considered to be two conflicting goals for recommendations.
We propose a general diversification framework agnostic to the choice of recommendation algorithms.
Our solution disentangles the learnt user representation in the recommendation module into category-independent and category-dependent components.
arXiv Detail & Related papers (2023-01-13T11:47:10Z) - Reenvisioning Collaborative Filtering vs Matrix Factorization [65.74881520196762]
Collaborative filtering models based on matrix factorization and learned similarities using Artificial Neural Networks (ANNs) have gained significant attention in recent years.
Announcement of ANNs within the recommendation ecosystem has been recently questioned, raising several comparisons in terms of efficiency and effectiveness.
We show the potential these techniques may have on beyond-accuracy evaluation while analyzing effect on complementary evaluation dimensions.
arXiv Detail & Related papers (2021-07-28T16:29:38Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
In this paper, we explore the unique characteristics of the implicit feedback and propose Set2setRank framework for recommendation.
Our proposed framework is model-agnostic and can be easily applied to most recommendation prediction approaches.
arXiv Detail & Related papers (2021-05-16T08:06:22Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
We propose a novel unsupervised multi-view feature selection model based on graph learning.
The contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned.
Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T03:25:25Z) - A Differentiable Ranking Metric Using Relaxed Sorting Operation for
Top-K Recommender Systems [1.2617078020344619]
A recommender system generates personalized recommendations by computing the preference score of items, sorting the items according to the score, and filtering top-K items with high scores.
While sorting and ranking items are integral for this recommendation procedure, it is nontrivial to incorporate them in the process of end-to-end model training.
This incurs the inconsistency issue between existing learning objectives and ranking metrics of recommenders.
We present DRM that mitigates the inconsistency and improves recommendation performance by employing the differentiable relaxation of ranking metrics.
arXiv Detail & Related papers (2020-08-30T10:57:33Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z) - SetRank: A Setwise Bayesian Approach for Collaborative Ranking from
Implicit Feedback [50.13745601531148]
We propose a novel setwise Bayesian approach for collaborative ranking, namely SetRank, to accommodate the characteristics of implicit feedback in recommender system.
Specifically, SetRank aims at maximizing the posterior probability of novel setwise preference comparisons.
We also present the theoretical analysis of SetRank to show that the bound of excess risk can be proportional to $sqrtM/N$.
arXiv Detail & Related papers (2020-02-23T06:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.