Preference Inference from Demonstration in Multi-objective Multi-agent
Decision Making
- URL: http://arxiv.org/abs/2304.14126v1
- Date: Thu, 27 Apr 2023 12:19:28 GMT
- Title: Preference Inference from Demonstration in Multi-objective Multi-agent
Decision Making
- Authors: Junlin Lu
- Abstract summary: We propose an algorithm to infer linear preference weights from either optimal or near-optimal demonstrations.
Empirical results demonstrate significant improvements compared to the baseline algorithms.
In future work, we plan to evaluate the algorithm's effectiveness in a multi-agent system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: It is challenging to quantify numerical preferences for different objectives
in a multi-objective decision-making problem. However, the demonstrations of a
user are often accessible. We propose an algorithm to infer linear preference
weights from either optimal or near-optimal demonstrations. The algorithm is
evaluated in three environments with two baseline methods. Empirical results
demonstrate significant improvements compared to the baseline algorithms, in
terms of both time requirements and accuracy of the inferred preferences. In
future work, we plan to evaluate the algorithm's effectiveness in a multi-agent
system, where one of the agents is enabled to infer the preferences of an
opponent using our preference inference algorithm.
Related papers
- Inferring Preferences from Demonstrations in Multi-objective Reinforcement Learning [2.9845592719739127]
This research proposes a dynamic weight-based preference inference algorithm.
It can infer the preferences of agents acting in multi-objective decision-making problems from demonstrations.
arXiv Detail & Related papers (2024-09-30T12:49:10Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Data-Efficient Interactive Multi-Objective Optimization Using ParEGO [6.042269506496206]
Multi-objective optimization seeks to identify a set of non-dominated solutions that provide optimal trade-offs among competing objectives.
In practical applications, decision-makers (DMs) will select a single solution that aligns with their preferences to be implemented.
We propose two novel algorithms that efficiently locate the most preferred region of the Pareto front in expensive-to-evaluate problems.
arXiv Detail & Related papers (2024-01-12T15:55:51Z) - Inferring Preferences from Demonstrations in Multi-objective
Reinforcement Learning: A Dynamic Weight-based Approach [0.0]
In multi-objective decision-making, preference inference is the process of inferring the preferences of a decision-maker for different objectives.
This research proposes a Dynamic Weight-based Preference Inference algorithm that can infer the preferences of agents acting in multi-objective decision-making problems.
arXiv Detail & Related papers (2023-04-27T11:55:07Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Bi-objective Ranking and Selection Using Stochastic Kriging [0.0]
We consider bi-objective ranking and selection problems in which the two objective outcomes have been observed with uncertainty.
We propose a novel Bayesian bi-objective ranking and selection method that sequentially allocates extra samples to competitive solutions.
Experimental results show that the proposed method outperforms the standard allocation method, as well as a well-known state-of-the-art algorithm.
arXiv Detail & Related papers (2022-09-05T23:51:07Z) - An Efficient Multi-Indicator and Many-Objective Optimization Algorithm
based on Two-Archive [7.7415390727490445]
This paper proposes an indicator-based multi-objective optimization algorithm based on two-archive (SRA3)
It can efficiently select good individuals in environment selection based on indicators performance and uses an adaptive parameter strategy for parental selection without setting additional parameters.
Experiments on the DTLZ and WFG problems show that SRA3 has good convergence and diversity while maintaining high efficiency.
arXiv Detail & Related papers (2022-01-14T13:09:50Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.