論文の概要: Generating Fundus Fluorescence Angiography Images from Structure Fundus
Images Using Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2006.10216v1
- Date: Thu, 18 Jun 2020 00:27:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 14:19:44.214503
- Title: Generating Fundus Fluorescence Angiography Images from Structure Fundus
Images Using Generative Adversarial Networks
- Title(参考訳): 生成型adversarial networkを用いた構造基底画像からの蛍光血管造影画像の生成
- Authors: Wanyue Li, Wen Kong, Yiwei Chen, Jing Wang, Yi He, Guohua Shi, Guohua
Deng
- Abstract要約: フルオレセイン血管造影は網膜血管の構造と機能の地図を提供することができる。
医師が診断の潜在的なリスクを軽減するために、画像翻訳法が採用されている。
- 参考スコア(独自算出の注目度): 8.205917237367748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluorescein angiography can provide a map of retinal vascular structure and
function, which is commonly used in ophthalmology diagnosis, however, this
imaging modality may pose risks of harm to the patients. To help physicians
reduce the potential risks of diagnosis, an image translation method is
adopted. In this work, we proposed a conditional generative adversarial
network(GAN) - based method to directly learn the mapping relationship between
structure fundus images and fundus fluorescence angiography images. Moreover,
local saliency maps, which define each pixel's importance, are used to define a
novel saliency loss in the GAN cost function. This facilitates more accurate
learning of small-vessel and fluorescein leakage features.
- Abstract(参考訳): 蛍光血管造影は、眼科診断で一般的に用いられる網膜血管構造と機能の地図を提供するが、このイメージングモダリティは、患者に危害を与えるリスクをもたらす可能性がある。
医師が診断の潜在的なリスクを軽減するために、画像翻訳法が採用された。
本研究では, 基礎画像と基礎蛍光アンギオグラフィー画像のマッピング関係を直接学習する条件付き生成対向ネットワーク(GAN)を提案する。
さらに、各ピクセルの重要性を定義する局所的サリエンシーマップは、ganコスト関数の新たなサリエンシー損失を定義するために使用される。
これにより、小胞体および蛍光体漏出機能のより正確な学習が促進される。
関連論文リスト
- Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
XM-GANと名づけられた少数ショット生成法は,1塩基と1対の参照組織像を入力とし,高品質で多様な画像を生成する。
我々の知る限りでは、大腸組織像の少数ショット生成を最初に調査した人物である。
論文 参考訳(メタデータ) (2023-04-04T17:50:30Z) - Multi-modal Retinal Image Registration Using a Keypoint-Based Vessel
Structure Aligning Network [9.988115865060589]
マルチモーダル網膜画像登録のためのエンドツーエンドのトレーニング可能なディープラーニング手法を提案する。
本手法は,キーポイントの検出と記述のために,容器構造から畳み込み特性を抽出する。
キーポイント検出・記述ネットワークとグラフニューラルネットワークは、自己教師された方法で共同で訓練される。
論文 参考訳(メタデータ) (2022-07-21T14:36:51Z) - A Keypoint Detection and Description Network Based on the Vessel
Structure for Multi-Modal Retinal Image Registration [0.0]
異なるモダリティや取得時間を持つ複数の画像は、網膜疾患の診断のためにしばしば分析される。
本手法は、畳み込みニューラルネットワークを用いて、多モード網膜画像の血管構造の特徴を抽出する。
論文 参考訳(メタデータ) (2022-01-06T20:43:35Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction
using Vision Transformers [0.0]
Fluorescein Angiography(FA)では、注射された染料を血流に注入して網膜の血管構造を画像化します。
眼底イメージングは網膜の撮影に用いられる非侵襲的な技術であるが、その血管構造を撮影するのに十分な忠実性は持たない。
本稿では,眼底画像からFA画像を同時に合成し,網膜変性を予測できる新しい条件生成対向ネットワーク(GAN)を提案する。
論文 参考訳(メタデータ) (2021-04-14T10:32:36Z) - Attention2AngioGAN: Synthesizing Fluorescein Angiography from Retinal
Fundus Images using Generative Adversarial Networks [0.0]
フルオレセイン血管造影(Fluorescein Angiography, FA)は、Fundusの写真撮影に、励起フィルターとバリアフィルターを取り入れた指定カメラを用いる技術である。
FAはまた、静脈注射されるフルオレセイン色素を必要としており、吐き気、吐き気、さらに致命的なアナフィラキシーに悪影響を及ぼす可能性がある。
本稿では,Fundus画像からFluorescein Angiographyを合成できるアテンションベースの生成ネットワークを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:58:44Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Fundus2Angio: A Conditional GAN Architecture for Generating Fluorescein
Angiography Images from Retinal Fundus Photography [0.0]
フルオレセイン血管造影画像を生成する非侵襲的なシステムはない。
ファンドス撮影は、数秒で完了する非侵襲的なイメージング技術である。
本稿では,基礎画像からFA画像へ変換する条件付き生成対向ネットワーク(GAN)を提案する。
論文 参考訳(メタデータ) (2020-05-11T17:09:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。