論文の概要: PathSegDiff: Pathology Segmentation using Diffusion model representations
- arxiv url: http://arxiv.org/abs/2504.06950v1
- Date: Wed, 09 Apr 2025 14:58:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:06:08.654006
- Title: PathSegDiff: Pathology Segmentation using Diffusion model representations
- Title(参考訳): PathSegDiff:拡散モデル表現を用いた病理分類
- Authors: Sachin Kumar Danisetty, Alexandros Graikos, Srikar Yellapragada, Dimitris Samaras,
- Abstract要約: そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
- 参考スコア(独自算出の注目度): 63.20694440934692
- License:
- Abstract: Image segmentation is crucial in many computational pathology pipelines, including accurate disease diagnosis, subtyping, outcome, and survivability prediction. The common approach for training a segmentation model relies on a pre-trained feature extractor and a dataset of paired image and mask annotations. These are used to train a lightweight prediction model that translates features into per-pixel classes. The choice of the feature extractor is central to the performance of the final segmentation model, and recent literature has focused on finding tasks to pre-train the feature extractor. In this paper, we propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors. Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H\&E stained histopathology images. We employ a simple, fully convolutional network to process the features extracted from the LDM and generate segmentation masks. Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets, highlighting the effectiveness of domain-specific diffusion pre-training in capturing intricate tissue structures and enhancing segmentation accuracy in histopathology images.
- Abstract(参考訳): イメージセグメンテーションは、正確な疾患診断、サブタイプ、結果、生存可能性予測など、多くの計算病理パイプラインにおいて重要である。
セグメンテーションモデルをトレーニングするための一般的なアプローチは、事前訓練された特徴抽出器とペア画像とマスクアノテーションのデータセットに依存する。
これらは、機能をピクセル単位のクラスに変換する軽量な予測モデルをトレーニングするために使用される。
特徴抽出器の選択は最終セグメンテーションモデルの性能の中心であり、最近の文献では特徴抽出器を事前訓練するタスクの発見に重点を置いている。
本稿では,病理組織像セグメンテーションのための新しいアプローチであるPathSegDiffを提案する。
本手法は,自己監督型エンコーダによって誘導される病理学固有のLCMを用いて,H&E染色組織像からリッチな意味情報を抽出する。
我々は, LDMから抽出した特徴を処理し, セグメンテーションマスクを生成するために, 単純で完全な畳み込みネットワークを用いる。
本実験は,BCSSおよびGlaSデータセットの従来の手法よりも大幅に改善され,複雑な組織構造を捕捉するドメイン特異的拡散事前トレーニングの有効性が強調され,病理組織像のセグメンテーション精度が向上した。
関連論文リスト
- Segmentation by Factorization: Unsupervised Semantic Segmentation for Pathology by Factorizing Foundation Model Features [0.0]
因子化(F-SEG)は病理学の教師なしセグメンテーション法である。
事前訓練されたディープラーニングモデルからセグメンテーションマスクを生成する。
論文 参考訳(メタデータ) (2024-09-09T15:11:45Z) - GRU-Net: Gaussian Attention Aided Dense Skip Connection Based MultiResUNet for Breast Histopathology Image Segmentation [24.85210810502592]
本稿では病理組織像分割のためのMultiResU-Netの修正版を提案する。
複雑な機能を複数のスケールで分析し、セグメント化できるため、バックボーンとして選択される。
乳がんの病理組織像データセットの多様性について検討した。
論文 参考訳(メタデータ) (2024-06-12T19:17:17Z) - EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
我々は、追加の訓練をすることなく、きめ細かなセグメンテーションマップを生成できる画像セグメンタを開発した。
低次元特徴写像の空間的位置と画像画素間の意味的対応を同定する。
大規模な実験では、生成したセグメンテーションマップがよく説明され、画像の細部を捉えることが示されている。
論文 参考訳(メタデータ) (2024-01-22T07:34:06Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
医用画像セグメンテーションは、ディープニューラルネットワークを用いて、胸部X線写真などの医用画像の異常な構造を特定し、発見することを目的としている。
我々の研究は、よく訓練された分類器から説明を集め、セグメンテーションタスクの擬似ラベルを生成する。
次に、インテグレート・グラディエント(IG)法を用いて、分類器から得られた説明を蒸留し、強化し、大規模診断指向のローカライゼーション・ラベル(DoLL)を生成する。
これらのDLLアノテーション付き画像は、新型コロナウイルス感染症、肺、心臓、鎖骨などの下流のセグメンテーションタスクのために、モデルを微調整する前に事前訓練するために使用される。
論文 参考訳(メタデータ) (2024-01-16T16:18:42Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Diffusion Adversarial Representation Learning for Self-supervised Vessel
Segmentation [36.65094442100924]
医療画像における血管分割は血管疾患の診断と治療計画において重要な課題の1つである。
本稿では,拡散確率モデルと逆学習を併用した新しい拡散逆表現学習(DARL)モデルを提案する。
本手法は血管セグメンテーションにおいて,既存の教師なし・自己教師付き手法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T06:06:15Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
我々は,対象地域を排除し,事前訓練の手順を改善する,新たな自己指導型アプローチを開発した。
予測モデルに対してエージェントを訓練することで、下流の分類タスクで抽出した意味的特徴を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-03-25T19:05:06Z) - Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation [4.898744396854313]
そこで本研究では,PCaの病理組織像に対して,異なる疾患ラベル間の幾何学的関係を学習して合成する方法を提案する。
我々はGleasonスコアを用いた弱教師付きセグメンテーション手法を用いて、疾患領域をセグメンテーションする。
得られたセグメンテーションマップは、行方不明のマスクセグメントを予測するためにShaRe-Net(ShaRe-Net)をトレーニングするために使用される。
論文 参考訳(メタデータ) (2021-10-01T13:47:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。