論文の概要: Quantifying Challenges in the Application of Graph Representation
Learning
- arxiv url: http://arxiv.org/abs/2006.10252v1
- Date: Thu, 18 Jun 2020 03:19:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 10:07:46.177332
- Title: Quantifying Challenges in the Application of Graph Representation
Learning
- Title(参考訳): グラフ表現学習における課題の定量化
- Authors: Antonia Gogoglou, C. Bayan Bruss, Brian Nguyen, Reza Sarshogh, Keegan
E. Hines
- Abstract要約: 私たちは、一般的な埋め込みアプローチのセットに対して、アプリケーション指向の視点を提供します。
実世界のグラフ特性に関する表現力を評価する。
GRLアプローチは現実のシナリオでは定義が困難であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Representation Learning (GRL) has experienced significant progress as a
means to extract structural information in a meaningful way for subsequent
learning tasks. Current approaches including shallow embeddings and Graph
Neural Networks have mostly been tested with node classification and link
prediction tasks. In this work, we provide an application oriented perspective
to a set of popular embedding approaches and evaluate their representational
power with respect to real-world graph properties. We implement an extensive
empirical data-driven framework to challenge existing norms regarding the
expressive power of embedding approaches in graphs with varying patterns along
with a theoretical analysis of the limitations we discovered in this process.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in
real-world scenarios and as new methods are being introduced they should be
explicit about their ability to capture graph properties and their
applicability in datasets with non-trivial structural differences.
- Abstract(参考訳): グラフ表現学習(grl)は、その後の学習タスクにおいて有意義な方法で構造情報を抽出する手段として大きな進歩を遂げている。
浅い埋め込みやグラフニューラルネットワークを含む現在のアプローチは、主にノード分類とリンク予測タスクでテストされてきた。
本研究では,一般的な組込みアプローチに対するアプリケーション指向の視点を提供し,その表現力と実世界のグラフ特性について評価する。
このプロセスで発見された制限の理論的解析とともに、パターンの異なるグラフに埋め込みアプローチの表現力に関する既存の規範に挑戦するために、広範な経験的データ駆動フレームワークを実装した。
GRLアプローチは実世界のシナリオでは定義が困難であり,新たな手法が導入されるにつれて,グラフ特性のキャプチャと,非自明な構造的差異を持つデータセットでの適用性について明確化する必要がある。
関連論文リスト
- Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
我々は、ゼロショット学習を用いて、多様なグラフタスクを効果的に一般化する統合グラフ推論フレームワークSCOREを紹介する。
SCOREを38種類のグラフデータセットを用いて評価し、ノードレベル、リンクレベル、グラフレベルのタスクを複数のドメインでカバーする。
論文 参考訳(メタデータ) (2024-10-16T14:26:08Z) - TopER: Topological Embeddings in Graph Representation Learning [8.052380377159398]
トポロジカル進化速度 (TopER) は、トポロジカルデータ解析に基づく低次元埋め込み手法である。
TopERはグラフ部分構造の進化率を計算することによって、重要な位相的アプローチである永続化ホモロジーを単純化する。
我々のモデルは、分類、クラスタリング、可視化といったタスクにおいて、分子、生物学的、ソーシャルネットワークのデータセットにまたがる最先端の結果を達成したり、超えたりします。
論文 参考訳(メタデータ) (2024-10-02T17:31:33Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
大規模"事前訓練と迅速な学習"パラダイムは、顕著な適応性を示している。
この調査は、この分野における100以上の関連する研究を分類し、一般的な設計原則と最新の応用を要約する。
論文 参考訳(メタデータ) (2024-08-26T06:36:42Z) - Disentangled Generative Graph Representation Learning [51.59824683232925]
本稿では,自己教師型学習フレームワークであるDiGGR(Disentangled Generative Graph Representation Learning)を紹介する。
潜伏要因を学習し、それをグラフマスクモデリングのガイドとして活用することを目的としている。
2つの異なるグラフ学習タスクのための11の公開データセットの実験は、DiGGRが従来よりも一貫して多くの自己教師付きメソッドを上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-24T05:13:02Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
グラフ学習の文脈における分布変化に対処する最新のアプローチ、戦略、洞察のレビューと要約を提供する。
既存のグラフ学習手法を,グラフ領域適応学習,グラフ配布学習,グラフ連続学習など,いくつかの重要なシナリオに分類する。
本稿では,この領域における現状を体系的に分析し,分散シフト下でのグラフ学習の可能性と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-02-26T07:52:40Z) - A Comprehensive Survey on Deep Graph Representation Learning [26.24869157855632]
グラフ表現学習は、高次元スパースグラフ構造化データを低次元密度ベクトルに符号化することを目的としている。
従来の手法ではモデル能力に制限があり、学習性能に制限がある。
深層グラフ表現学習は、浅い(伝統的な)方法よりも大きな可能性と利点を示している。
論文 参考訳(メタデータ) (2023-04-11T08:23:52Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
本稿では,ロバスト因果グラフ表現学習(RCGRL)を提案する。
RCGRLは、無条件のモーメント制約の下でインストゥルメンタル変数を生成するアクティブなアプローチを導入し、グラフ表現学習モデルにより、共同設立者を排除している。
論文 参考訳(メタデータ) (2022-08-18T01:31:25Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。