論文の概要: Neural Architecture Optimization with Graph VAE
- arxiv url: http://arxiv.org/abs/2006.10310v1
- Date: Thu, 18 Jun 2020 07:05:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 12:41:43.080860
- Title: Neural Architecture Optimization with Graph VAE
- Title(参考訳): Graph VAEによるニューラルネットワーク最適化
- Authors: Jian Li, Yong Liu, Jiankun Liu, Weiping Wang
- Abstract要約: 連続空間におけるネットワークアーキテクチャを最適化するための効率的なNAS手法を提案する。
フレームワークは、エンコーダ、パフォーマンス予測器、複雑性予測器、デコーダの4つのコンポーネントを共同で学習する。
- 参考スコア(独自算出の注目度): 21.126140965779534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to their high computational efficiency on a continuous space, gradient
optimization methods have shown great potential in the neural architecture
search (NAS) domain. The mapping of network representation from the discrete
space to a latent space is the key to discovering novel architectures, however,
existing gradient-based methods fail to fully characterize the networks. In
this paper, we propose an efficient NAS approach to optimize network
architectures in a continuous space, where the latent space is built upon
variational autoencoder (VAE) and graph neural networks (GNN). The framework
jointly learns four components: the encoder, the performance predictor, the
complexity predictor and the decoder in an end-to-end manner. The encoder and
the decoder belong to a graph VAE, mapping architectures between continuous
representations and network architectures. The predictors are two regression
models, fitting the performance and computational complexity, respectively.
Those predictors ensure the discovered architectures characterize both
excellent performance and high computational efficiency. Extensive experiments
demonstrate our framework not only generates appropriate continuous
representations but also discovers powerful neural architectures.
- Abstract(参考訳): 連続空間における計算効率が高いため、勾配最適化法はニューラルアーキテクチャ探索(NAS)領域において大きな可能性を示している。
離散空間から潜在空間へのネットワーク表現のマッピングは、新しいアーキテクチャを発見する鍵となるが、既存の勾配に基づく手法ではネットワークを完全に特徴づけることができない。
本稿では,変分オートエンコーダ (VAE) とグラフニューラルネットワーク (GNN) を用いて潜時空間を構築する連続空間におけるネットワークアーキテクチャを最適化する効率的なNAS手法を提案する。
フレームワークは、エンコーダ、パフォーマンス予測器、複雑性予測器、デコーダの4つのコンポーネントをエンドツーエンドで共同で学習する。
エンコーダとデコーダはグラフVAEに属し、連続表現とネットワークアーキテクチャの間のアーキテクチャをマッピングする。
予測器は2つの回帰モデルであり、それぞれ性能と計算量に適合する。
これらの予測器は、検出されたアーキテクチャが優れた性能と高い計算効率の両方を特徴付けることを保証します。
広範な実験によって、フレームワークは適切な連続表現を生成するだけでなく、強力なニューラルネットワークアーキテクチャも発見します。
関連論文リスト
- Multi-conditioned Graph Diffusion for Neural Architecture Search [8.290336491323796]
本稿では、離散的な条件付きグラフ拡散プロセスを用いて、高性能ニューラルネットワークアーキテクチャを生成するグラフ拡散に基づくNAS手法を提案する。
6つの標準ベンチマークで有望な結果を示し、新しいアーキテクチャとユニークなアーキテクチャを高速に実現します。
論文 参考訳(メタデータ) (2024-03-09T21:45:31Z) - Set-based Neural Network Encoding [57.15855198512551]
一般化性能予測のためのニューラルネットワーク重み符号化手法を提案する。
我々のアプローチは、混合アーキテクチャのモデル動物園でニューラルネットワークを符号化することができる。
ニューラルネットワークの一般化性能予測には,クロスデータセットとクロスアーキテクチャという2つの新しいタスクを導入する。
論文 参考訳(メタデータ) (2023-05-26T04:34:28Z) - CR-LSO: Convex Neural Architecture Optimization in the Latent Space of
Graph Variational Autoencoder with Input Convex Neural Networks [7.910915721525413]
潜時空間最適化(LSO)に基づくニューラルアーキテクチャ探索(NAS)法では、離散的ニューラルアーキテクチャを連続潜時空間に埋め込むために深層生成モデルを訓練する。
本稿では,空間の学習過程を正規化することを目的とした凸性アーキテクチャ正規化空間(CRLSO)法について述べる。
3つのNASベンチマークによる実験結果から,CR-LSOは計算複雑性と性能の両面で競合評価結果が得られることが示された。
論文 参考訳(メタデータ) (2022-11-11T01:55:11Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
本研究では,フロー推定タスクにおいて,より優れたエンコーダアーキテクチャを自動で見つけるために,FlowNASというニューラルアーキテクチャ探索手法を提案する。
実験の結果、スーパーネットワークから受け継いだ重み付きアーキテクチャは、KITTI上で4.67%のF1-allエラーを達成していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T09:05:25Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
本稿では,タスク性能と「イントロスペクタビリティ」の両方を最適化するフレームワークを提案する。
タスクエラーとイントロスペクタビリティを共同で最適化することは、エラー内で実行されるより不整合でデバッグ可能なアーキテクチャをもたらすことを実証する。
論文 参考訳(メタデータ) (2021-12-16T05:50:55Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
本研究では,探索空間からニューラルネットワークをスムーズにエンコードし,正確に再構築できる2面変分グラフオートエンコーダを提案する。
ENASアプローチ,NAS-Bench-101およびNAS-Bench-201探索空間で定義されたニューラルネットワークに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-10-09T17:05:41Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
サンプル選択とランキングの両方を導くことで、アーキテクチャとトレーニングのレシピを共同でスコアする精度予測器を提案する。
高速な進化的検索をCPU分で実行し、さまざまなリソース制約に対するアーキテクチャと準備のペアを生成します。
FBNetV3は最先端のコンパクトニューラルネットワークのファミリーを構成しており、自動と手動で設計された競合より優れている。
論文 参考訳(メタデータ) (2020-06-03T05:20:21Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
そこで本稿では,MobileNet をバイナライズする際の構築と訓練を容易にするための進化的探索手法を提案する。
ワンショットアーキテクチャ検索フレームワークに着想を得て、グループ畳み込みのアイデアを操り、効率的な1ビット畳み込みニューラルネットワーク(CNN)を設計する。
我々の目標は、グループ畳み込みの最良の候補を探索することで、小さなが効率的なバイナリニューラルアーキテクチャを考案することである。
論文 参考訳(メタデータ) (2020-05-13T13:25:51Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
ResNetやNASNetのような現代の畳み込みネットワークは、多くのコンピュータビジョンアプリケーションで最先端の結果を得た。
これらのネットワークは、同じ解像度で表現を操作するレイヤのセットであるステージで構成されている。
各ステージにおけるレイヤー数の増加はネットワークの予測能力を向上させることが示されている。
しかし、結果として得られるアーキテクチャは、浮動小数点演算、メモリ要求、推論時間の観点から計算的に高価になる。
論文 参考訳(メタデータ) (2020-04-23T14:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。