論文の概要: Multi-conditioned Graph Diffusion for Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2403.06020v2
- Date: Fri, 22 Mar 2024 13:51:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 21:51:11.353759
- Title: Multi-conditioned Graph Diffusion for Neural Architecture Search
- Title(参考訳): ニューラルネットワーク探索のための多条件グラフ拡散
- Authors: Rohan Asthana, Joschua Conrad, Youssef Dawoud, Maurits Ortmanns, Vasileios Belagiannis,
- Abstract要約: 本稿では、離散的な条件付きグラフ拡散プロセスを用いて、高性能ニューラルネットワークアーキテクチャを生成するグラフ拡散に基づくNAS手法を提案する。
6つの標準ベンチマークで有望な結果を示し、新しいアーキテクチャとユニークなアーキテクチャを高速に実現します。
- 参考スコア(独自算出の注目度): 8.290336491323796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural architecture search automates the design of neural network architectures usually by exploring a large and thus complex architecture search space. To advance the architecture search, we present a graph diffusion-based NAS approach that uses discrete conditional graph diffusion processes to generate high-performing neural network architectures. We then propose a multi-conditioned classifier-free guidance approach applied to graph diffusion networks to jointly impose constraints such as high accuracy and low hardware latency. Unlike the related work, our method is completely differentiable and requires only a single model training. In our evaluations, we show promising results on six standard benchmarks, yielding novel and unique architectures at a fast speed, i.e. less than 0.2 seconds per architecture. Furthermore, we demonstrate the generalisability and efficiency of our method through experiments on ImageNet dataset.
- Abstract(参考訳): ニューラルアーキテクチャサーチは、通常、大きくて複雑なアーキテクチャサーチスペースを探索することによって、ニューラルネットワークアーキテクチャの設計を自動化する。
アーキテクチャ探索を進めるために、離散的な条件付きグラフ拡散プロセスを用いて高性能ニューラルネットワークアーキテクチャを生成するグラフ拡散に基づくNAS手法を提案する。
次に,グラフ拡散ネットワークに適用した多条件分類器フリーガイダンス手法を提案する。
関連する作業と異なり、我々の手法は完全に微分可能であり、単一のモデルトレーニングしか必要としない。
評価では、6つの標準ベンチマークで有望な結果を示し、新しいアーキテクチャとユニークなアーキテクチャを高速に生成する。
さらに,ImageNetデータセットを用いた実験により,本手法の汎用性と効率性を示す。
関連論文リスト
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
ニューラルアーキテクチャサーチ(NAS)により、リサーチ者は広大なサーチスペースを自動的に探索し、効率的なニューラルネットワークを見つけることができる。
NASは重要なボトルネックに悩まされており、探索プロセス中に多くのアーキテクチャを評価する必要がある。
SMEM-NASは,多集団構造に基づく多目的進化アルゴリズムである。
論文 参考訳(メタデータ) (2024-07-22T12:46:22Z) - Unsupervised Graph Neural Architecture Search with Disentangled
Self-supervision [51.88848982611515]
教師なしグラフニューラルアーキテクチャサーチは、文献では未発見のままである。
本稿では,Distangled Self-supervised Graph Neural Architecture Searchモデルを提案する。
我々のモデルは、教師なしの方法で、いくつかのベースライン手法に対して最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-03-08T05:23:55Z) - Neural Architecture Codesign for Fast Bragg Peak Analysis [1.7081438846690533]
我々は,高速かつリアルタイムなブラッグピーク解析のためのニューラルネットワーク符号の合理化のための自動パイプラインを開発した。
我々の手法では、ハードウェアコストを含むこれらのモデルを強化するために、ニューラルアーキテクチャ検索とAutoMLを使用し、よりハードウェア効率の良いニューラルアーキテクチャの発見に繋がる。
論文 参考訳(メタデータ) (2023-12-10T19:42:18Z) - Network Graph Based Neural Architecture Search [57.78724765340237]
我々は、対応するグラフを書き換えてニューラルネットワークを探索し、グラフ特性によるアーキテクチャ性能の予測を行う。
グラフ空間全体にわたって機械学習を行わないため、探索プロセスは極めて効率的である。
論文 参考訳(メタデータ) (2021-12-15T00:12:03Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
本研究では,探索空間からニューラルネットワークをスムーズにエンコードし,正確に再構築できる2面変分グラフオートエンコーダを提案する。
ENASアプローチ,NAS-Bench-101およびNAS-Bench-201探索空間で定義されたニューラルネットワークに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-10-09T17:05:41Z) - Neural Architecture Optimization with Graph VAE [21.126140965779534]
連続空間におけるネットワークアーキテクチャを最適化するための効率的なNAS手法を提案する。
フレームワークは、エンコーダ、パフォーマンス予測器、複雑性予測器、デコーダの4つのコンポーネントを共同で学習する。
論文 参考訳(メタデータ) (2020-06-18T07:05:48Z) - Interpretable Neural Architecture Search via Bayesian Optimisation with
Weisfeiler-Lehman Kernels [17.945881805452288]
現在のニューラルアーキテクチャサーチ(NAS)戦略は、単一の優れたアーキテクチャを見つけることに集中している。
そこで我々は,Weisfeiler-Lehmanグラフカーネルとガウス過程サロゲートを組み合わせたNASに対するベイズ最適化手法を提案する。
提案手法は,有用なネットワーク特徴とそれに伴うネットワーク性能への影響を発見することによって,解釈可能性を実現する。
論文 参考訳(メタデータ) (2020-06-13T04:10:34Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
本稿では,ディープ・ニューラル・アーキテクチャーを効果的かつ効率的に探索するためのディバイド・アンド・コンカ(DC)手法を提案する。
ImageNetデータセットで75.1%の精度を達成しており、これは同じ検索空間を使った最先端の手法よりも高い。
論文 参考訳(メタデータ) (2020-05-29T09:02:16Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
DDPNASと呼ばれる効率よく統一されたNASフレームワークを提案する。
検索空間は動的に切断され,その分布はいくつかのエポック毎に更新される。
提案した効率的なネットワーク生成手法により,与えられた制約に対する最適なニューラルネットワークアーキテクチャを直接取得する。
論文 参考訳(メタデータ) (2019-05-28T06:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。