論文の概要: Learning High-Resolution Domain-Specific Representations with a GAN
Generator
- arxiv url: http://arxiv.org/abs/2006.10451v1
- Date: Thu, 18 Jun 2020 11:57:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 14:00:27.267426
- Title: Learning High-Resolution Domain-Specific Representations with a GAN
Generator
- Title(参考訳): GANジェネレータを用いた高分解能領域表現の学習
- Authors: Danil Galeev, Konstantin Sofiiuk, Danila Rukhovich, Mikhail Romanov,
Olga Barinova, Anton Konushin
- Abstract要約: 本稿では,GANジェネレータが学習した表現を,軽量デコーダを用いてセマンティックセグメンテーションマップに簡単に投影できることを示す。
本稿では、教師なしドメイン固有の事前学習に使用できるGANジェネレータの表現を近似するLayerMatch方式を提案する。
また,LayerMatch-pretrained backboneの使用は,ImageNetの標準教師付き事前トレーニングよりも精度が高いことがわかった。
- 参考スコア(独自算出の注目度): 5.8720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years generative models of visual data have made a great progress,
and now they are able to produce images of high quality and diversity. In this
work we study representations learnt by a GAN generator. First, we show that
these representations can be easily projected onto semantic segmentation map
using a lightweight decoder. We find that such semantic projection can be
learnt from just a few annotated images. Based on this finding, we propose
LayerMatch scheme for approximating the representation of a GAN generator that
can be used for unsupervised domain-specific pretraining. We consider the
semi-supervised learning scenario when a small amount of labeled data is
available along with a large unlabeled dataset from the same domain. We find
that the use of LayerMatch-pretrained backbone leads to superior accuracy
compared to standard supervised pretraining on ImageNet. Moreover, this simple
approach also outperforms recent semi-supervised semantic segmentation methods
that use both labeled and unlabeled data during training. Source code for
reproducing our experiments will be available at the time of publication.
- Abstract(参考訳): 近年、視覚データの生成モデルは大きな進歩を遂げ、高品質で多様な画像を生成することができるようになった。
本研究では,GANジェネレータで学習した表現について検討する。
まず,これらの表現を軽量デコーダを用いてセマンティックセグメンテーションマップに簡単に投影できることを示す。
このような意味的投射は、ほんの数枚の注釈付き画像から学ぶことができる。
そこで本研究では,教師なしドメイン固有の事前学習に使用できるGANジェネレータの表現を近似するLayerMatch方式を提案する。
ラベル付きデータの少ないデータと、同じドメインからのラベルなしの大きなデータセットが利用できる場合、半教師付き学習シナリオを考える。
また,LayerMatch-pretrained backboneの使用は,ImageNetの標準教師付き事前トレーニングよりも精度が高いことがわかった。
さらに、この単純なアプローチは、トレーニング中にラベル付きデータとラベルなしデータの両方を使用する、最近の半教師付きセマンティックセグメンテーション手法よりも優れている。
実験を再現するためのソースコードは、公開時点で公開されます。
関連論文リスト
- SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation [18.598405597933752]
自己監督(Self-supervision)は、人造地理空間アノテーションの正確な量を減らすためのリモートセンシングツールを提供する。
本研究では,モデル事前学習のためのノイズの多いセマンティックセグメンテーションマップを提案する。
2つのデータセットから,ノイズラベルを用いたタスク固有教師付き事前学習の有効性が示唆された。
論文 参考訳(メタデータ) (2024-02-25T18:01:42Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
多様な合成画像や知覚アノテーションを生成できる汎用データセット生成モデルを提案する。
本手法は,事前学習した拡散モデルに基づいて,テキスト誘導画像合成を知覚データ生成に拡張する。
拡散モデルのリッチ潜時コードはデコーダモジュールを用いて正確な認識アノテーションとして効果的に復号できることを示す。
論文 参考訳(メタデータ) (2023-08-11T14:38:11Z) - A Semi-Paired Approach For Label-to-Image Translation [6.888253564585197]
ラベル・ツー・イメージ翻訳のための半教師付き(半ペア)フレームワークを初めて紹介する。
半ペア画像設定では、小さなペアデータとより大きなペア画像とラベルのセットにアクセスすることができる。
本稿では,この共有ネットワークのためのトレーニングアルゴリズムを提案し,非表現型クラスに着目した希少なクラスサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-23T16:13:43Z) - Enhancing Self-Supervised Learning for Remote Sensing with Elevation
Data: A Case Study with Scarce And High Level Semantic Labels [1.534667887016089]
本研究は、地球観測下流タスクに適用された事前学習モデルに対する、教師なしと教師なしのハイブリッド学習手法を提案する。
我々は、事前訓練モデルに対する対照的なアプローチと画素単位の回帰事前テキストタスクを組み合わせることで、粗い標高マップを予測する。
論文 参考訳(メタデータ) (2023-04-13T23:01:11Z) - Extracting Semantic Knowledge from GANs with Unsupervised Learning [65.32631025780631]
GAN(Generative Adversarial Networks)は、特徴写像のセマンティクスを線形に分離可能な形でエンコードする。
本稿では,線形分離性を利用してGANの特徴をクラスタリングする新しいクラスタリングアルゴリズムKLiSHを提案する。
KLiSHは、さまざまなオブジェクトのデータセットに基づいてトレーニングされたGANのきめ細かいセマンティクスの抽出に成功している。
論文 参考訳(メタデータ) (2022-11-30T03:18:16Z) - BigDatasetGAN: Synthesizing ImageNet with Pixel-wise Annotations [89.42397034542189]
我々は,GAN(Generative Adversarial Network)を介して,大規模ラベル付きデータセットを合成する。
我々は、ImageNetで訓練されたクラス条件生成モデルBigGANの画像サンプルを、すべての1kクラスに対して、クラス毎の5つのイメージを手動でアノテートする。
我々は、追加の8k実画像のセットをラベル付けして、新しいImageNetベンチマークを作成し、様々な設定でセグメンテーション性能を評価する。
論文 参考訳(メタデータ) (2022-01-12T20:28:34Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。