論文の概要: Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation
- arxiv url: http://arxiv.org/abs/2402.16164v3
- Date: Fri, 7 Jun 2024 21:52:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 01:13:35.296837
- Title: Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation
- Title(参考訳): リモートセンシング画像セグメンテーションのための雑音ラベルを用いたタスク特定事前学習
- Authors: Chenying Liu, Conrad M Albrecht, Yi Wang, Xiao Xiang Zhu,
- Abstract要約: 自己監督(Self-supervision)は、人造地理空間アノテーションの正確な量を減らすためのリモートセンシングツールを提供する。
本研究では,モデル事前学習のためのノイズの多いセマンティックセグメンテーションマップを提案する。
2つのデータセットから,ノイズラベルを用いたタスク固有教師付き事前学習の有効性が示唆された。
- 参考スコア(独自算出の注目度): 18.598405597933752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared to supervised deep learning, self-supervision provides remote sensing a tool to reduce the amount of exact, human-crafted geospatial annotations. While image-level information for unsupervised pretraining efficiently works for various classification downstream tasks, the performance on pixel-level semantic segmentation lags behind in terms of model accuracy. On the contrary, many easily available label sources (e.g., automatic labeling tools and land cover land use products) exist, which can provide a large amount of noisy labels for segmentation model training. In this work, we propose to exploit noisy semantic segmentation maps for model pretraining. Our experiments provide insights on robustness per network layer. The transfer learning settings test the cases when the pretrained encoders are fine-tuned for different label classes and decoders. The results from two datasets indicate the effectiveness of task-specific supervised pretraining with noisy labels. Our findings pave new avenues to improved model accuracy and novel pretraining strategies for efficient remote sensing image segmentation.
- Abstract(参考訳): 教師付きディープラーニングと比較して、セルフスーパービジョンは、人造地理空間アノテーションの正確な量を減らすためのリモートセンシングツールを提供する。
教師なし事前学習のための画像レベル情報は、様々な下流タスクに対して効率的に機能するが、モデル精度の観点からはピクセルレベルのセマンティックセマンティックセマンティックスラグのパフォーマンスが遅れている。
それとは対照的に、多くの手軽に利用可能なラベルソース(例えば、自動ラベル付けツールや土地被覆土地利用製品)が存在し、セグメンテーションモデルトレーニングのための大量のノイズラベルを提供することができる。
本研究では,モデル事前学習のためのノイズの多いセマンティックセグメンテーションマップを提案する。
我々の実験はネットワーク層ごとの堅牢性に関する洞察を提供する。
転送学習設定は、事前訓練されたエンコーダが異なるラベルクラスやデコーダに対して微調整された場合をテストする。
2つのデータセットから,ノイズラベルを用いたタスク固有教師付き事前学習の有効性が示唆された。
提案手法は, モデル精度の向上と, 効率的なリモートセンシング画像セグメンテーションのための新しい事前学習方法である。
関連論文リスト
- Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
フットプリントマップの構築は、広範な後処理なしで正確なフットプリント抽出を約束する。
ディープラーニング手法は、一般化とラベルの効率の面で課題に直面している。
リモートセンシングに適した地形認識型自己教師型学習を提案する。
論文 参考訳(メタデータ) (2023-11-02T12:34:23Z) - Impact of Label Types on Training SWIN Models with Overhead Imagery [0.0]
本研究は,境界ボックスとセグメンテーションラベルを用いたシフト窓変圧器の訓練効果について検討した。
対象画素のみにトレーニングしたモデルでは,分類タスクの性能向上が得られないことがわかった。
オブジェクト検出では、各ラベルタイプでトレーニングされたモデルが、テスト全体で同等のパフォーマンスを示した。
論文 参考訳(メタデータ) (2023-10-11T15:14:54Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial
Images [62.36946925639107]
セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
論文 参考訳(メタデータ) (2023-09-11T14:32:04Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
画像部品の相対的な位置を予測し,セマンティックセグメンテーションのためのネットワークを事前訓練する。
参照パッチのサブセットを問合せのサブセットにマスキングすることで,タスクの難しさを制御します。
実験により,この位置認識事前学習が,いくつかの難解なセマンティックセグメンテーションベンチマークに競合する表現をもたらすことが示された。
論文 参考訳(メタデータ) (2022-12-05T16:24:29Z) - CaSP: Class-agnostic Semi-Supervised Pretraining for Detection and
Segmentation [60.28924281991539]
本稿では,タスク固有性バランスを向上するために,クラス非依存型半教師付き事前学習(CaSP)フレームワークを提案する。
我々は3.6Mの未ラベルデータを用いて、ImageNetで規定されたオブジェクト検出のベースラインよりも4.7%の顕著なパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2021-12-09T14:54:59Z) - Evaluating Self and Semi-Supervised Methods for Remote Sensing
Segmentation Tasks [4.7590051176368915]
我々は、下流タスク性能を改善するためにラベルのないデータを活用する、最近の自己および半教師付きML技術を評価する。
これらの手法は、ラベルなし画像へのアクセスが容易で、真理ラベルの取得が高価である場合が多いため、リモートセンシングタスクには特に有用である。
論文 参考訳(メタデータ) (2021-11-19T07:41:14Z) - Active Learning for Improved Semi-Supervised Semantic Segmentation in
Satellite Images [1.0152838128195467]
半教師付きテクニックは、ラベル付きサンプルの小さなセットから擬似ラベルを生成する。
そこで我々は,ラベル付きトレーニングデータの集合を高度に代表的に選択するために,アクティブな学習に基づくサンプリング戦略を提案する。
我々はmIoUの27%の改善を報告し、2%のラベル付きデータをアクティブラーニングサンプリング戦略を用いて報告した。
論文 参考訳(メタデータ) (2021-10-15T00:29:31Z) - Semi-weakly Supervised Contrastive Representation Learning for Retinal
Fundus Images [0.2538209532048867]
本稿では,半弱化アノテーションを用いた表現学習のための,半弱化教師付きコントラスト学習フレームワークを提案する。
SWCLの移動学習性能を7つの公立網膜眼底データセットで実証的に検証した。
論文 参考訳(メタデータ) (2021-08-04T15:50:09Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
アーキテクチャがノイズラベルによる学習に与える影響について検討する。
ノイズラベルを用いたトレーニングは,モデルが一般化に乏しい場合でも,有用な隠れ表現を誘導できることを示す。
この発見は、騒々しいラベルで訓練されたモデルを改善する簡単な方法につながります。
論文 参考訳(メタデータ) (2020-12-23T18:58:05Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
大規模ラベル付きサンプルで学習した深層畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンにおいて顕著な進歩を遂げている。
大量のラベル付きビジュアルデータを取得する最も安価な方法は、Flickrのようなユーザーが提供するラベルでウェブサイトからクロールすることである。
本稿では,潜在的なラベルノイズのあるデータセットに基づいて学習したネットワークの識別能力を向上させるために,注目に敏感なラベル学習手法を提案する。
論文 参考訳(メタデータ) (2020-09-30T15:45:36Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。