Auxiliary-task learning for geographic data with autoregressive
embeddings
- URL: http://arxiv.org/abs/2006.10461v3
- Date: Thu, 19 Aug 2021 10:22:48 GMT
- Title: Auxiliary-task learning for geographic data with autoregressive
embeddings
- Authors: Konstantin Klemmer, Daniel B. Neill
- Abstract summary: We propose SXL, a method for embedding information on the autoregressive nature of spatial data directly into the learning process.
We utilize the local Moran's I, a popular measure of local spatial autocorrelation, to "nudge" the model to learn the direction and magnitude of local spatial effects.
We highlight how our method consistently improves the training of neural networks in unsupervised and supervised learning tasks.
- Score: 1.4823143667165382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning is gaining popularity in a broad range of areas working with
geographic data, such as ecology or atmospheric sciences. Here, data often
exhibit spatial effects, which can be difficult to learn for neural networks.
In this study, we propose SXL, a method for embedding information on the
autoregressive nature of spatial data directly into the learning process using
auxiliary tasks. We utilize the local Moran's I, a popular measure of local
spatial autocorrelation, to "nudge" the model to learn the direction and
magnitude of local spatial effects, complementing the learning of the primary
task. We further introduce a novel expansion of Moran's I to multiple
resolutions, thus capturing spatial interactions over longer and shorter
distances simultaneously. The novel multi-resolution Moran's I can be
constructed easily and as a multi-dimensional tensor offers seamless
integration into existing machine learning frameworks. Throughout a range of
experiments using real-world data, we highlight how our method consistently
improves the training of neural networks in unsupervised and supervised
learning tasks. In generative spatial modeling experiments, we propose a novel
loss for auxiliary task GANs utilizing task uncertainty weights. Our proposed
method outperforms domain-specific spatial interpolation benchmarks,
highlighting its potential for downstream applications. This study bridges
expertise from geographic information science and machine learning, showing how
this integration of disciplines can help to address domain-specific challenges.
The code for our experiments is available on Github:
https://github.com/konstantinklemmer/sxl.
Related papers
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Comparing Active Learning Performance Driven by Gaussian Processes or
Bayesian Neural Networks for Constrained Trajectory Exploration [0.0]
Currently, humans drive robots to meet scientific objectives, but depending on the robot's location, the exchange of information and driving commands may cause undue delays in mission fulfillment.
An autonomous robot encoded with a scientific objective and an exploration strategy incurs no communication delays and can fulfill missions more quickly.
Active learning algorithms offer this capability of intelligent exploration, but the underlying model structure varies the performance of the active learning algorithm in accurately forming an understanding of the environment.
arXiv Detail & Related papers (2023-09-28T02:45:14Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - DeepMerge II: Building Robust Deep Learning Algorithms for Merging
Galaxy Identification Across Domains [0.0]
In astronomy, neural networks are often trained on simulation data with the prospect of being used on telescope observations.
We show that the addition of each domain adaptation technique improves the performance of a classifier when compared to conventional deep learning algorithms.
We demonstrate this on two examples: between two Illustris-1 simulated datasets of distant merging galaxies, and between Illustris-1 simulated data of nearby merging galaxies and observed data from the Sloan Digital Sky Survey.
arXiv Detail & Related papers (2021-03-02T00:24:10Z) - Flexible deep transfer learning by separate feature embeddings and
manifold alignment [0.0]
Object recognition is a key enabler across industry and defense.
Unfortunately, algorithms trained on existing labeled datasets do not directly generalize to new data because the data distributions do not match.
We propose a novel deep learning framework that overcomes this limitation by learning separate feature extractions for each domain.
arXiv Detail & Related papers (2020-12-22T19:24:44Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
We show that due to their different characteristics, a non-trivial gap persists between contrastive and supervised learning on standard benchmarks.
We propose novel training methods that exploit the spatially aligned structure of remote sensing data.
Our experiments show that our proposed method closes the gap between contrastive and supervised learning on image classification, object detection and semantic segmentation for remote sensing.
arXiv Detail & Related papers (2020-11-19T17:29:13Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
We provide a comprehensive survey, and propose a new taxonomy for localization and mapping using deep learning.
A wide range of topics are covered, from learning odometry estimation, mapping, to global localization and simultaneous localization and mapping.
It is our hope that this work can connect emerging works from robotics, computer vision and machine learning communities.
arXiv Detail & Related papers (2020-06-22T19:01:21Z) - Trajectory annotation using sequences of spatial perception [0.0]
In the near future, more and more machines will perform tasks in the vicinity of human spaces.
This work builds a foundation to address this task.
We propose an unsupervised learning approach based on a neural autoencoding that learns semantically meaningful continuous encodings of prototypical trajectory data.
arXiv Detail & Related papers (2020-04-11T12:22:27Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.