Trajectory annotation using sequences of spatial perception
- URL: http://arxiv.org/abs/2004.05383v1
- Date: Sat, 11 Apr 2020 12:22:27 GMT
- Title: Trajectory annotation using sequences of spatial perception
- Authors: Sebastian Feld (1), Steffen Illium (1), Andreas Sedlmeier (1), Lenz
Belzner (2) ((1) Mobile and Distributed Systems Group LMU Munich, (2)
MaibornWolff Munich)
- Abstract summary: In the near future, more and more machines will perform tasks in the vicinity of human spaces.
This work builds a foundation to address this task.
We propose an unsupervised learning approach based on a neural autoencoding that learns semantically meaningful continuous encodings of prototypical trajectory data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the near future, more and more machines will perform tasks in the vicinity
of human spaces or support them directly in their spatially bound activities.
In order to simplify the verbal communication and the interaction between
robotic units and/or humans, reliable and robust systems w.r.t. noise and
processing results are needed. This work builds a foundation to address this
task. By using a continuous representation of spatial perception in interiors
learned from trajectory data, our approach clusters movement in dependency to
its spatial context. We propose an unsupervised learning approach based on a
neural autoencoding that learns semantically meaningful continuous encodings of
spatio-temporal trajectory data. This learned encoding can be used to form
prototypical representations. We present promising results that clear the path
for future applications.
Related papers
- Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.
Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
We develop an approach for learning visual affordances for guiding robot exploration.
We use a Transformer-based model to learn a conditional distribution in the latent embedding space of a VQ-VAE.
We show how the trained affordance model can be used for guiding exploration by acting as a goal-sampling distribution, during visual goal-conditioned policy learning in robotic manipulation.
arXiv Detail & Related papers (2023-05-28T17:53:09Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
This paper proposes a novel neural-network-based approach to progressively and autonomously develop pixel-wise representations in a video stream.
The proposed method is based on a human-like attention mechanism that allows the agent to learn by observing what is moving in the attended locations.
Our experiments leverage 3D virtual environments and they show that the proposed agents can learn to distinguish objects just by observing the video stream.
arXiv Detail & Related papers (2022-04-26T09:52:31Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
We show that due to their different characteristics, a non-trivial gap persists between contrastive and supervised learning on standard benchmarks.
We propose novel training methods that exploit the spatially aligned structure of remote sensing data.
Our experiments show that our proposed method closes the gap between contrastive and supervised learning on image classification, object detection and semantic segmentation for remote sensing.
arXiv Detail & Related papers (2020-11-19T17:29:13Z) - Exploring Dynamic Context for Multi-path Trajectory Prediction [33.66335553588001]
We propose a novel framework, named Dynamic Context Network (DCENet)
In our framework, the spatial context between agents is explored by using self-attention architectures.
A set of future trajectories for each agent is predicted conditioned on the learned spatial-temporal context.
arXiv Detail & Related papers (2020-10-30T13:39:20Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
We study how representation learning can accelerate reinforcement learning from rich observations, such as images, without relying either on domain knowledge or pixel-reconstruction.
Bisimulation metrics quantify behavioral similarity between states in continuous MDPs.
We demonstrate the effectiveness of our method at disregarding task-irrelevant information using modified visual MuJoCo tasks.
arXiv Detail & Related papers (2020-06-18T17:59:35Z) - Auxiliary-task learning for geographic data with autoregressive
embeddings [1.4823143667165382]
We propose SXL, a method for embedding information on the autoregressive nature of spatial data directly into the learning process.
We utilize the local Moran's I, a popular measure of local spatial autocorrelation, to "nudge" the model to learn the direction and magnitude of local spatial effects.
We highlight how our method consistently improves the training of neural networks in unsupervised and supervised learning tasks.
arXiv Detail & Related papers (2020-06-18T12:16:08Z) - Robust and Interpretable Grounding of Spatial References with Relation
Networks [40.42540299023808]
Learning representations of spatial references in natural language is a key challenge in tasks like autonomous navigation and robotic manipulation.
Recent work has investigated various neural architectures for learning multi-modal representations for spatial concepts.
We develop effective models for understanding spatial references in text that are robust and interpretable.
arXiv Detail & Related papers (2020-05-02T04:11:33Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Learning Object Placements For Relational Instructions by Hallucinating
Scene Representations [26.897316325189205]
We present a convolutional neural network for estimating pixelwise object placement probabilities for a set of spatial relations from a single input image.
Our method does not require ground truth data for the pixelwise relational probabilities or 3D models of the objects.
Results obtained using real-world data and human-robot experiments demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2020-01-23T12:58:50Z) - Learning Topometric Semantic Maps from Occupancy Grids [2.5234065536725963]
We propose a new approach for deriving such instance-based semantic maps purely from occupancy grids.
We employ a combination of deep learning techniques to detect, segment and extract door hypotheses from a random-sized map.
We evaluate our approach on several publicly available real-world data sets.
arXiv Detail & Related papers (2020-01-10T22:06:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.