StarCraft II Build Order Optimization using Deep Reinforcement Learning
and Monte-Carlo Tree Search
- URL: http://arxiv.org/abs/2006.10525v1
- Date: Fri, 12 Jun 2020 08:53:52 GMT
- Title: StarCraft II Build Order Optimization using Deep Reinforcement Learning
and Monte-Carlo Tree Search
- Authors: Islam Elnabarawy, Kristijana Arroyo, Donald C. Wunsch II
- Abstract summary: This study examines the use of an agent based on the Monte-Carlo Tree Search algorithm for optimizing the build order in StarCraft II.
It discusses how its performance can be improved even further by combining it with a deep reinforcement learning neural network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The real-time strategy game of StarCraft II has been posed as a challenge for
reinforcement learning by Google's DeepMind. This study examines the use of an
agent based on the Monte-Carlo Tree Search algorithm for optimizing the build
order in StarCraft II, and discusses how its performance can be improved even
further by combining it with a deep reinforcement learning neural network. The
experimental results accomplished using Monte-Carlo Tree Search achieves a
score similar to a novice human player by only using very limited time and
computational resources, which paves the way to achieving scores comparable to
those of a human expert by combining it with the use of deep reinforcement
learning.
Related papers
- LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget.
Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach enjoys significantly lower computational costs compared to baseline methods.
arXiv Detail & Related papers (2024-06-29T05:14:04Z) - Tree-Based Adaptive Model Learning [62.997667081978825]
We extend the Kearns-Vazirani learning algorithm to handle systems that change over time.
We present a new learning algorithm that can reuse and update previously learned behavior, implement it in the LearnLib library, and evaluate it on large examples.
arXiv Detail & Related papers (2022-08-31T21:24:22Z) - Applying supervised and reinforcement learning methods to create
neural-network-based agents for playing StarCraft II [0.0]
We propose a neural network architecture for playing the full two-player match of StarCraft II trained with general-purpose supervised and reinforcement learning.
Our implementation achieves a non-trivial performance when compared to the in-game scripted bots.
arXiv Detail & Related papers (2021-09-26T20:08:10Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
We propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes)
We show how it can be parameterized so a quality-diversity algorithm (MAP-Elites) is used to achieve different play-styles while keeping a competitive level of play.
Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training.
arXiv Detail & Related papers (2021-04-17T20:33:24Z) - Dual Monte Carlo Tree Search [0.0]
We show that Dual MCTS performs better than one of the most widely used neural MCTS algorithms, AlphaZero, for various symmetric and asymmetric games.
Dual MCTS uses two different search trees, a single deep neural network, and a new update technique for the search trees using a combination of the PUCB, a sliding-window, and the epsilon-greedy algorithm.
arXiv Detail & Related papers (2021-03-21T23:34:11Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - SCC: an efficient deep reinforcement learning agent mastering the game
of StarCraft II [15.612456049715123]
AlphaStar, the AI that reaches GrandMaster level in StarCraft II, is a remarkable milestone demonstrating what deep reinforcement learning can achieve.
We propose a deep reinforcement learning agent, StarCraft Commander ( SCC)
SCC demonstrates top human performance defeating GrandMaster players in test matches and top professional players in a live event.
arXiv Detail & Related papers (2020-12-24T08:43:44Z) - Chrome Dino Run using Reinforcement Learning [0.0]
We study most popular model free reinforcement learning algorithms along with convolutional neural network to train the agent for playing the game of Chrome Dino Run.
We have used two of the popular temporal difference approaches namely Deep Q-Learning, and Expected SARSA and also implemented Double DQN model to train the agent.
arXiv Detail & Related papers (2020-08-15T22:18:20Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z) - Single-Agent Optimization Through Policy Iteration Using Monte-Carlo
Tree Search [8.22379888383833]
Combination of Monte-Carlo Tree Search (MCTS) and deep reinforcement learning is state-of-the-art in two-player perfect-information games.
We describe a search algorithm that uses a variant of MCTS which we enhanced by 1) a novel action value normalization mechanism for games with potentially unbounded rewards, 2) defining a virtual loss function that enables effective search parallelization, and 3) a policy network, trained by generations of self-play, to guide the search.
arXiv Detail & Related papers (2020-05-22T18:02:36Z) - Provable Self-Play Algorithms for Competitive Reinforcement Learning [48.12602400021397]
We study self-play in competitive reinforcement learning under the setting of Markov games.
We show that a self-play algorithm achieves regret $tildemathcalO(sqrtT)$ after playing $T$ steps of the game.
We also introduce an explore-then-exploit style algorithm, which achieves a slightly worse regret $tildemathcalO(T2/3)$, but is guaranteed to run in time even in the worst case.
arXiv Detail & Related papers (2020-02-10T18:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.