論文の概要: Towards Threshold Invariant Fair Classification
- arxiv url: http://arxiv.org/abs/2006.10667v1
- Date: Thu, 18 Jun 2020 16:49:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 12:56:45.798912
- Title: Towards Threshold Invariant Fair Classification
- Title(参考訳): 閾値不変公正分類に向けて
- Authors: Mingliang Chen and Min Wu
- Abstract要約: 本稿では、決定しきい値とは無関係に、異なるグループ間で公平な性能を強制する、しきい値不変公平性の概念を紹介する。
実験結果から,提案手法は,公平性を実現するために設計された機械学習モデルの閾値感度を緩和するために有効であることが示された。
- 参考スコア(独自算出の注目度): 10.317169065327546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective machine learning models can automatically learn useful information
from a large quantity of data and provide decisions in a high accuracy. These
models may, however, lead to unfair predictions in certain sense among the
population groups of interest, where the grouping is based on such sensitive
attributes as race and gender. Various fairness definitions, such as
demographic parity and equalized odds, were proposed in prior art to ensure
that decisions guided by the machine learning models are equitable.
Unfortunately, the "fair" model trained with these fairness definitions is
threshold sensitive, i.e., the condition of fairness may no longer hold true
when tuning the decision threshold. This paper introduces the notion of
threshold invariant fairness, which enforces equitable performances across
different groups independent of the decision threshold. To achieve this goal,
this paper proposes to equalize the risk distributions among the groups via two
approximation methods. Experimental results demonstrate that the proposed
methodology is effective to alleviate the threshold sensitivity in machine
learning models designed to achieve fairness.
- Abstract(参考訳): 効果的な機械学習モデルは、大量のデータから有用な情報を自動学習し、高い精度で意思決定を行うことができる。
しかし、これらのモデルは、人種や性別などのセンシティブな属性に基づくグループ化によって、ある意味での不公平な予測につながる可能性がある。
人口統計学的パリティや等化オッズといった様々な公平性の定義が先行技術で提案され、機械学習モデルによって導かれる決定が等価であることを保証する。
残念なことに、これらの公正定義で訓練された「公正」モデルはしきい値に敏感である。
本稿では, 決定しきい値によらず, 異なる群にまたがる等価性能を強制するしきい値不変フェアネスの概念を紹介する。
この目的を達成するために,2つの近似手法を用いてグループ間のリスク分布を等化することを提案する。
実験の結果,公平性を達成するために設計された機械学習モデルのしきい値感度を緩和するために提案手法が有効であることが示された。
関連論文リスト
- DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - fAux: Testing Individual Fairness via Gradient Alignment [2.5329739965085785]
いずれの要件も持たない個別の公正性をテストするための新しいアプローチについて述べる。
提案手法は,合成データセットと実世界のデータセットの識別を効果的に行う。
論文 参考訳(メタデータ) (2022-10-10T21:27:20Z) - Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity [10.144058870887061]
1つの予測器が等しく機能するモデルのグループからアドホックに選択された場合、個人は害を受ける可能性があると我々は主張する。
これらの不公平性は実生活で容易に発見でき、技術的手段だけで緩和することは困難である可能性が示唆された。
論文 参考訳(メタデータ) (2022-03-14T14:33:39Z) - Group-Aware Threshold Adaptation for Fair Classification [9.496524884855557]
複数のフェアネス制約を克服する新しいポストプロセッシング手法を提案する。
理論的には,同条件下での既存手法よりも近似最適に近い上界を許容する。
実験の結果,本手法は最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-11-08T04:36:37Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Accounting for Model Uncertainty in Algorithmic Discrimination [16.654676310264705]
フェアネスアプローチは、モデルの不確実性に起因するエラーの均等化にのみ焦点をあてるべきである。
予測多重性とモデル不確実性の間に関係をもち、予測多重性からの手法がモデル不確実性に起因するエラーの特定に使用できると主張する。
論文 参考訳(メタデータ) (2021-05-10T10:34:12Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
機械学習を実生活の意思決定システムに適用すると、予測結果は機密性の高い属性を持つ人々に対して差別され、不公平になる可能性がある。
公正機械学習における一般的な戦略は、予測損失の最小化において、制約や罰則として公正さを含めることである。
本稿では,多目的最適化問題を定式化して公平性を扱うための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-03T18:51:24Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
未知の真のターゲットラベルのプロキシとして、ドメイン不変の予測器のセットを使用します。
結果として生じるリスク見積の誤差は、プロキシモデルのターゲットリスクに依存する。
論文 参考訳(メタデータ) (2020-07-06T17:21:24Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。