List-Decodable Mean Estimation via Iterative Multi-Filtering
- URL: http://arxiv.org/abs/2006.10715v2
- Date: Sat, 20 Jun 2020 18:34:16 GMT
- Title: List-Decodable Mean Estimation via Iterative Multi-Filtering
- Authors: Ilias Diakonikolas and Daniel M. Kane and Daniel Kongsgaard
- Abstract summary: We are given a set $T$ of points in $mathbbRd$ with the promise that an unknown $alpha$-fraction of points in $T$ are drawn from an unknown mean and bounded covariance distribution $D$.
We output a small list of hypothesis vectors such that at least one of them is close to the mean of $D$.
In more detail, our algorithm is sample and computationally efficient, and achieves information-theoretically near-optimal error.
- Score: 44.805549762166926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of {\em list-decodable mean estimation} for bounded
covariance distributions. Specifically, we are given a set $T$ of points in
$\mathbb{R}^d$ with the promise that an unknown $\alpha$-fraction of points in
$T$, where $0< \alpha < 1/2$, are drawn from an unknown mean and bounded
covariance distribution $D$, and no assumptions are made on the remaining
points. The goal is to output a small list of hypothesis vectors such that at
least one of them is close to the mean of $D$. We give the first practically
viable estimator for this problem. In more detail, our algorithm is sample and
computationally efficient, and achieves information-theoretically near-optimal
error. While the only prior algorithm for this setting inherently relied on the
ellipsoid method, our algorithm is iterative and only uses spectral techniques.
Our main technical innovation is the design of a soft outlier removal procedure
for high-dimensional heavy-tailed datasets with a majority of outliers.
Related papers
- An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Robust Sparse Mean Estimation via Incremental Learning [15.536082641659423]
In this paper, we study the problem of robust mean estimation, where the goal is to estimate a $k$-sparse mean from a collection of partially corrupted samples.
We present a simple mean estimator that overcomes both challenges under moderate conditions.
Our method does not need any prior knowledge of the sparsity level $k$.
arXiv Detail & Related papers (2023-05-24T16:02:28Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering [42.526664955704746]
We develop a novel, conceptually simpler technique for list-decodable sparse mean estimation.
In particular, for distributions with "certifiably bounded" $t-th moments in $k$-sparse directions, our algorithm achieves error of $(1/alpha)O (1/t)$ with sample complexity $m = (klog(n))O(t)/alpha(mnt)$.
For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $Theta (sqrtlog
arXiv Detail & Related papers (2022-06-10T17:38:18Z) - List-Decodable Sparse Mean Estimation [7.594050968868919]
A surge of recent research interest has been focusing on the list-decodable setting where $alpha in (0, frac12]$, and the goal is to output a finite number of estimates among which at least one approximates the target mean.
In this paper, we consider that the underlying target is the mean distribution $k$ and the first contribution is the first sample $Obig(mathrmpoly(k, log dbig)$, i.e. poly-logarithmic in the dimension dimension.
arXiv Detail & Related papers (2022-05-28T05:13:45Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.