Robust Sparse Mean Estimation via Incremental Learning
- URL: http://arxiv.org/abs/2305.15276v1
- Date: Wed, 24 May 2023 16:02:28 GMT
- Title: Robust Sparse Mean Estimation via Incremental Learning
- Authors: Jianhao Ma, Rui Ray Chen, Yinghui He, Salar Fattahi, Wei Hu
- Abstract summary: In this paper, we study the problem of robust mean estimation, where the goal is to estimate a $k$-sparse mean from a collection of partially corrupted samples.
We present a simple mean estimator that overcomes both challenges under moderate conditions.
Our method does not need any prior knowledge of the sparsity level $k$.
- Score: 15.536082641659423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of robust sparse mean estimation, where
the goal is to estimate a $k$-sparse mean from a collection of partially
corrupted samples drawn from a heavy-tailed distribution. Existing estimators
face two critical challenges in this setting. First, they are limited by a
conjectured computational-statistical tradeoff, implying that any
computationally efficient algorithm needs $\tilde\Omega(k^2)$ samples, while
its statistically-optimal counterpart only requires $\tilde O(k)$ samples.
Second, the existing estimators fall short of practical use as they scale
poorly with the ambient dimension. This paper presents a simple mean estimator
that overcomes both challenges under moderate conditions: it runs in
near-linear time and memory (both with respect to the ambient dimension) while
requiring only $\tilde O(k)$ samples to recover the true mean. At the core of
our method lies an incremental learning phenomenon: we introduce a simple
nonconvex framework that can incrementally learn the top-$k$ nonzero elements
of the mean while keeping the zero elements arbitrarily small. Unlike existing
estimators, our method does not need any prior knowledge of the sparsity level
$k$. We prove the optimality of our estimator by providing a matching
information-theoretic lower bound. Finally, we conduct a series of simulations
to corroborate our theoretical findings. Our code is available at
https://github.com/huihui0902/Robust_mean_estimation.
Related papers
- Outlier-robust Mean Estimation near the Breakdown Point via Sum-of-Squares [4.335413713700667]
We give a new analysis of the canonical sum-of-squares program introduced in citekothari2018robust.
We show that this program efficiently achieves optimal error rate for all $varepsilon in[0,frac12)$.
arXiv Detail & Related papers (2024-11-21T16:57:05Z) - Active Subsampling for Measurement-Constrained M-Estimation of Individualized Thresholds with High-Dimensional Data [3.1138411427556445]
In the measurement-constrained problems, despite the availability of large datasets, we may be only affordable to observe the labels on a small portion of the large dataset.
This poses a critical question that which data points are most beneficial to label given a budget constraint.
In this paper, we focus on the estimation of the optimal individualized threshold in a measurement-constrained M-estimation framework.
arXiv Detail & Related papers (2024-11-21T00:21:17Z) - Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression [4.396860522241307]
We show that an efficient learning algorithm for sparse linear regression can be used to solve sparse PCA problems with a negative spike.
We complement our reduction with low-degree and statistical query lower bounds for the sparse problems from which we reduce.
arXiv Detail & Related papers (2024-02-21T19:55:01Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
Kernel-based optimal transport (OT) estimators offer an alternative, functional estimation procedure to address OT problems from samples.
We show that our SSN method achieves a global convergence rate of $O (1/sqrtk)$, and a local quadratic convergence rate under standard regularity conditions.
arXiv Detail & Related papers (2023-10-21T18:48:45Z) - List-Decodable Sparse Mean Estimation [7.594050968868919]
A surge of recent research interest has been focusing on the list-decodable setting where $alpha in (0, frac12]$, and the goal is to output a finite number of estimates among which at least one approximates the target mean.
In this paper, we consider that the underlying target is the mean distribution $k$ and the first contribution is the first sample $Obig(mathrmpoly(k, log dbig)$, i.e. poly-logarithmic in the dimension dimension.
arXiv Detail & Related papers (2022-05-28T05:13:45Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Learning Minimax Estimators via Online Learning [55.92459567732491]
We consider the problem of designing minimax estimators for estimating parameters of a probability distribution.
We construct an algorithm for finding a mixed-case Nash equilibrium.
arXiv Detail & Related papers (2020-06-19T22:49:42Z) - List-Decodable Mean Estimation via Iterative Multi-Filtering [44.805549762166926]
We are given a set $T$ of points in $mathbbRd$ with the promise that an unknown $alpha$-fraction of points in $T$ are drawn from an unknown mean and bounded covariance distribution $D$.
We output a small list of hypothesis vectors such that at least one of them is close to the mean of $D$.
In more detail, our algorithm is sample and computationally efficient, and achieves information-theoretically near-optimal error.
arXiv Detail & Related papers (2020-06-18T17:47:37Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z) - Computationally efficient sparse clustering [67.95910835079825]
We provide a finite sample analysis of a new clustering algorithm based on PCA.
We show that it achieves the minimax optimal misclustering rate in the regime $|theta infty$.
arXiv Detail & Related papers (2020-05-21T17:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.