Quantized Floquet topology with temporal noise
- URL: http://arxiv.org/abs/2006.10736v2
- Date: Tue, 15 Jun 2021 19:45:37 GMT
- Title: Quantized Floquet topology with temporal noise
- Authors: Christopher I. Timms, Lukas M. Sieberer, and Michael H. Kolodrubetz
- Abstract summary: We study the Floquet insulator, which exhibits topologically quantized chiral edge states similar to a Chern insulator.
We find that the quantized response, given by partially filling the fermionic system and measuring charge pumped per cycle, remains quantized up to finite noise amplitude.
This approach suggests an interpretation of the state of the system as a non-Hermitian Floquet topological phase.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-periodic (Floquet) drive is a powerful method to engineer quantum phases
of matter, including fundamentally non-equilibrium states that are impossible
in static Hamiltonian systems. One characteristic example is the anomalous
Floquet insulator, which exhibits topologically quantized chiral edge states
similar to a Chern insulator, yet is amenable to bulk localization. We study
the response of this topological system to time-dependent noise, which breaks
the topologically protecting Floquet symmetry. Surprisingly, we find that the
quantized response, given by partially filling the fermionic system and
measuring charge pumped per cycle, remains quantized up to finite noise
amplitude. We trace this robust topology to an interplay between diffusion and
Pauli blocking of edge state decay, which we expect should be robust against
interactions. We determine the boundaries of the topological phase for a system
with spatial disorder numerically through level statistics, and corroborate our
results in the limit of vanishing disorder through an analytical Floquet
superoperator approach. This approach suggests an interpretation of the state
of the system as a non-Hermitian Floquet topological phase. We comment on
quantization of other topological responses in the absence of Floquet symmetry
and potential experimental realizations.
Related papers
- Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Anomalous Floquet Phases. A resonance phenomena [0.0]
Floquet topological phases emerge when systems are periodically driven out-of-equilibrium.
We show that resonances in Floquet phases can be accurately captured in analytical terms.
We also find a bulk-to-boundary correspondence between the number of edge states in finite systems.
arXiv Detail & Related papers (2023-12-11T19:00:13Z) - Quantum Signatures of Topological Phase in Bosonic Quadratic System [0.38850145898707145]
We show that an open bosonic quadratic chain exhibits topology-induced entanglement effect.
When the system is in the topological phase, the edge modes can be entangled in the steady state, while no entanglement appears in the trivial phase.
Our work reveals that the stationary entanglement can be a quantum signature of the topological phase in bosonic systems.
arXiv Detail & Related papers (2023-09-13T15:18:33Z) - Dissipative preparation of a Floquet topological insulator in an optical lattice via bath engineering [44.99833362998488]
Floquet engineering is an important tool for realizing charge-neutral atoms in optical lattices.
We show that a driven-dissipative system approximates a topological insulator.
arXiv Detail & Related papers (2023-07-07T17:47:50Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Distinguishing Phases via Non-Markovian Dynamics of Entanglement in
Topological Quantum Codes under Parallel Magnetic Field [0.0]
Localizable entanglement is studied on nontrivial loops of topological quantum codes with parallel magnetic field.
We study the behavior of these lower bounds in the vicinity of the topological to nontopological quantum phase transition of the system.
We find that in the case of the non-Markovian dephasing noise, at large time, the canonical measurement-based lower bound oscillates with a larger amplitude.
arXiv Detail & Related papers (2021-08-25T12:23:40Z) - Self-organized topological insulator due to cavity-mediated correlated
tunneling [0.0]
We discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions.
The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry.
The emerging quantum phase is a topological insulator and is found at half fillings.
arXiv Detail & Related papers (2020-11-03T13:23:06Z) - Dynamical Mean-Field Theory for Markovian Open Quantum Many-Body Systems [0.0]
We extend the nonequilibrium bosonic Dynamical Mean Field Theory to Markovian open quantum systems.
As a first application, we address the steady-state of a driven-dissipative Bose-Hubbard model with two-body losses and incoherent pump.
arXiv Detail & Related papers (2020-08-06T10:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.