Anomalous Floquet Phases. A resonance phenomena
- URL: http://arxiv.org/abs/2312.06778v2
- Date: Wed, 06 Nov 2024 20:21:29 GMT
- Title: Anomalous Floquet Phases. A resonance phenomena
- Authors: Álvaro Gómez-León,
- Abstract summary: Floquet topological phases emerge when systems are periodically driven out-of-equilibrium.
We show that resonances in Floquet phases can be accurately captured in analytical terms.
We also find a bulk-to-boundary correspondence between the number of edge states in finite systems.
- Score: 0.0
- License:
- Abstract: Floquet topological phases emerge when systems are periodically driven out-of-equilibrium. They gained attention due to their external control, which allows to simulate a wide variety of static systems by just tuning the external field in the high frequency regime. However, it was soon clear that their relevance goes beyond that, as for lower frequencies, anomalous phases without a static counterpart are present and the bulk-to-boundary correspondence can fail. In this work we discuss the important role of resonances in Floquet phases. For that, we present a method to find analytical solutions when the frequency of the drive matches the band gap, extending the well-known high frequency analysis of Floquet systems. With this formalism, we show that the topology of Floquet phases with resonances can be accurately captured in analytical terms. We also find a bulk-to-boundary correspondence between the number of edge states in finite systems and a set of topological invariants in different frames of reference, which crucially do not explicitly involve the micromotion. To illustrate our results, we periodically drive a SSH chain and a $\pi$-flux lattice, showing that our findings remain valid in various two-band systems and in different dimensions. In addition, we notice that the competition between rotating and counter-rotating terms must be carefully treated when the undriven system is a semi-metal. To conclude, we discuss the implications to experimental setups, including the direct detection of anomalous topological phases and the measurement of their invariants.
Related papers
- Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Quantum Signatures of Topological Phase in Bosonic Quadratic System [0.38850145898707145]
We show that an open bosonic quadratic chain exhibits topology-induced entanglement effect.
When the system is in the topological phase, the edge modes can be entangled in the steady state, while no entanglement appears in the trivial phase.
Our work reveals that the stationary entanglement can be a quantum signature of the topological phase in bosonic systems.
arXiv Detail & Related papers (2023-09-13T15:18:33Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Floquet dynamical phase transition and entanglement spectrum [0.0]
Floquet dynamical quantum phase transitions (FDQFTs) are studied in the one-dimensional p-wave superconductor.
We show that FDQFTs occur within a range of driving frequency without resorting to quenches.
We show that FDQFTs appear in the region where quasi-spins are in the resonance regime.
arXiv Detail & Related papers (2020-09-20T17:51:28Z) - Complexity and Floquet dynamics: non-equilibrium Ising phase transitions [0.0]
We study the time-dependent circuit complexity of the periodically driven transverse field Ising model.
In the high-frequency driving limit the system is known to exhibit non-equilibrium phase transitions governed by the amplitude of the driving field.
arXiv Detail & Related papers (2020-08-31T19:13:03Z) - Quantized Floquet topology with temporal noise [0.0]
We study the Floquet insulator, which exhibits topologically quantized chiral edge states similar to a Chern insulator.
We find that the quantized response, given by partially filling the fermionic system and measuring charge pumped per cycle, remains quantized up to finite noise amplitude.
This approach suggests an interpretation of the state of the system as a non-Hermitian Floquet topological phase.
arXiv Detail & Related papers (2020-06-18T17:58:26Z) - Universal presence of time-crystalline phases and period-doubling
oscillations in one-dimensional Floquet topological insulators [2.3978553352626064]
We report a ubiquitous presence of topological Floquet time crystal (TFTC) in one-dimensional periodically-driven systems.
Our modeling of the time-crystalline 'ground state' can be easily realized in experimental platforms such as topological photonics and ultracold fields.
arXiv Detail & Related papers (2020-05-08T09:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.