論文の概要: Reparameterized Variational Divergence Minimization for Stable Imitation
- arxiv url: http://arxiv.org/abs/2006.10810v1
- Date: Thu, 18 Jun 2020 19:04:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 13:07:33.072523
- Title: Reparameterized Variational Divergence Minimization for Stable Imitation
- Title(参考訳): 安定模擬のためのパラメータ化変分最小化
- Authors: Dilip Arumugam, Debadeepta Dey, Alekh Agarwal, Asli Celikyilmaz, Elnaz
Nouri, Bill Dolan
- Abstract要約: 確率的発散の選択における変動が、より高性能なILOアルゴリズムをもたらす可能性について検討する。
本稿では,提案する$f$-divergence最小化フレームワークの課題を軽減するために,逆模倣学習のための再パラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
- 参考スコア(独自算出の注目度): 57.06909373038396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While recent state-of-the-art results for adversarial imitation-learning
algorithms are encouraging, recent works exploring the imitation learning from
observation (ILO) setting, where trajectories \textit{only} contain expert
observations, have not been met with the same success. Inspired by recent
investigations of $f$-divergence manipulation for the standard imitation
learning setting(Ke et al., 2019; Ghasemipour et al., 2019), we here examine
the extent to which variations in the choice of probabilistic divergence may
yield more performant ILO algorithms. We unfortunately find that $f$-divergence
minimization through reinforcement learning is susceptible to numerical
instabilities. We contribute a reparameterization trick for adversarial
imitation learning to alleviate the optimization challenges of the promising
$f$-divergence minimization framework. Empirically, we demonstrate that our
design choices allow for ILO algorithms that outperform baseline approaches and
more closely match expert performance in low-dimensional continuous-control
tasks.
- Abstract(参考訳): 近年、敵の模倣学習アルゴリズムの最先端の成果が奨励されているが、観測(ILO)設定からの模倣学習(trajectories \textit{only} が専門的な観察を含む)を探求する最近の研究は、同じ成功を収めていない。
標準的な模倣学習環境(Ke et al., 2019; Ghasemipour et al., 2019)に対する$f$-divergence操作の最近の研究に触発されて、確率的発散の選択における変動がより優れたIOOアルゴリズムをもたらす可能性について検討した。
残念ながら、強化学習による$f$-divergenceの最小化は数値不安定性に影響を受けやすい。
本稿では,$f$-divergence最小化フレームワークの最適化課題を軽減するために,逆模倣学習のためのパラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
関連論文リスト
- Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
本稿では、勾配降下(SGD)とその変種に着目し、ディープラーニングの最適化に新しいアプローチを採用する。
我々はSGDとその変種がSAMのような平らなミニマと同等の性能を示すことを示した。
本研究は、トレーニング損失とホールドアウト精度の関係、およびSGDとノイズ対応変種の性能について、いくつかの重要な知見を明らかにした。
論文 参考訳(メタデータ) (2024-03-01T14:55:22Z) - Hessian Aware Low-Rank Perturbation for Order-Robust Continual Learning [19.850893012601638]
連続学習は、前のタスクから得た知識を忘れずに、一連のタスクを逐次学習することを目的としている。
本稿では,Hessian Aware Low-Rank Perturbationアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-26T01:44:01Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
非定常環境におけるポリシーを効率的に学習するアルゴリズムを導入する。
これは、リアルタイム、高信頼な変更点検出統計において、潜在的に無限のデータストリームと計算を解析する。
i) このアルゴリズムは, 予期せぬ状況変化が検出されるまでの遅延を最小限に抑え, 迅速な応答を可能にする。
論文 参考訳(メタデータ) (2021-05-20T01:57:52Z) - A Regret Minimization Approach to Iterative Learning Control [61.37088759497583]
我々は、標準的な不確実性の仮定を最悪の場合の後悔に置き換える新しいパフォーマンスメトリック、計画後悔を提案します。
提案アルゴリズムがいくつかのベンチマークで既存の手法よりも優れているという理論的および実証的な証拠を提供します。
論文 参考訳(メタデータ) (2021-02-26T13:48:49Z) - Joint Stochastic Approximation and Its Application to Learning Discrete
Latent Variable Models [19.07718284287928]
推定モデルに対する信頼度勾配を得るのが困難であることや、間接的にターゲットのログを最適化することの欠点を優雅に解決できることが示される。
本稿では,対象の対数類似度を直接最大化し,後部モデルと推論モデルとの包摂的ばらつきを同時に最小化することを提案する。
結果の学習アルゴリズムは、ジョイントSA(JSA)と呼ばれる。
論文 参考訳(メタデータ) (2020-05-28T13:50:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。