論文の概要: Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning
- arxiv url: http://arxiv.org/abs/2204.03597v1
- Date: Thu, 7 Apr 2022 17:16:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-08 15:15:46.705900
- Title: Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning
- Title(参考訳): Imitating, Fast and Slow: 意思決定時計画によるデモからのロバスト学習
- Authors: Carl Qi, Pieter Abbeel, Aditya Grover
- Abstract要約: テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 96.72185761508668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of imitation learning is to mimic expert behavior from
demonstrations, without access to an explicit reward signal. A popular class of
approach infers the (unknown) reward function via inverse reinforcement
learning (IRL) followed by maximizing this reward function via reinforcement
learning (RL). The policies learned via these approaches are however very
brittle in practice and deteriorate quickly even with small test-time
perturbations due to compounding errors. We propose Imitation with Planning at
Test-time (IMPLANT), a new meta-algorithm for imitation learning that utilizes
decision-time planning to correct for compounding errors of any base imitation
policy. In contrast to existing approaches, we retain both the imitation policy
and the rewards model at decision-time, thereby benefiting from the learning
signal of the two components. Empirically, we demonstrate that IMPLANT
significantly outperforms benchmark imitation learning approaches on standard
control environments and excels at zero-shot generalization when subject to
challenging perturbations in test-time dynamics.
- Abstract(参考訳): 模倣学習の目標は、明示的な報酬信号にアクセスすることなく、デモンストレーションから専門家の行動を模倣することである。
一般的なアプローチのクラスでは、(未知の)報酬関数を逆強化学習(IRL)で推論し、続いて強化学習(RL)で報酬関数を最大化する。
しかしながら、これらのアプローチを通じて学んだ方針は、実際は非常に不安定であり、複雑なエラーのために小さなテスト時間摂動でも急速に悪化する。
提案するImitation with Planning at Test-time(IMPLANT)は,意思決定時計画を利用して,任意の基本模倣ポリシーの誤りを補足するメタアルゴリズムである。
既存のアプローチとは対照的に、我々は模倣ポリシーと報酬モデルの両方を意思決定時に保持し、2つのコンポーネントの学習信号の恩恵を受ける。
実験により, インプラントは標準制御環境におけるベンチマーク模倣学習アプローチを著しく上回っており, テスト時力学における難解な摂動を受ける場合, ゼロショット一般化に優れることを示した。
関連論文リスト
- Temporal-Difference Variational Continual Learning [89.32940051152782]
現実世界のアプリケーションにおける機械学習モデルの重要な機能は、新しいタスクを継続的に学習する能力である。
継続的な学習設定では、モデルは以前の知識を保持することで新しいタスクの学習のバランスをとるのに苦労することが多い。
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
論文 参考訳(メタデータ) (2024-10-10T10:58:41Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Validity Learning on Failures: Mitigating the Distribution Shift in Autonomous Vehicle Planning [2.3558144417896583]
計画問題は、自律運転フレームワークの基本的な側面を構成する。
この問題に対処するための対策として,失敗に対する妥当性学習,VL(on failure)を提案する。
VL(on failure)は最先端の手法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2024-06-03T17:25:18Z) - Assessor-Guided Learning for Continual Environments [17.181933166255448]
本稿では,継続的学習のための評価者指導型学習戦略を提案する。
評価者は、学習過程の方向とペースを制御することにより、基礎学習者の学習過程を案内する。
評価器はメタ学習方式でメタオブジェクトを用いて訓練され、ベース学習者の学習プロセスが促進される。
論文 参考訳(メタデータ) (2023-03-21T06:45:14Z) - Sample-efficient Adversarial Imitation Learning [45.400080101596956]
状態と行動表現を学習するための自己教師付き表現に基づく対向的模倣学習法を提案する。
本研究は,M MuJoCo上での既存対向模倣学習法に対して,100対の専門的状態-作用ペアに制限された設定で相対的に39%改善したことを示す。
論文 参考訳(メタデータ) (2023-03-14T12:36:01Z) - Imitating Past Successes can be Very Suboptimal [145.70788608016755]
既存の結果条件付き模倣学習手法が必ずしもポリシーを改善できないことを示す。
簡単な修正が、政策改善を保証する方法をもたらすことを示す。
我々の目的は、全く新しい方法を開発するのではなく、成果条件付き模倣学習の変種が報酬を最大化するためにどのように使用できるかを説明することである。
論文 参考訳(メタデータ) (2022-06-07T15:13:43Z) - Robust Learning from Observation with Model Misspecification [33.92371002674386]
イミテーションラーニング(Imitation Learning, IL)は、ロボットシステムにおけるトレーニングポリシーの一般的なパラダイムである。
我々は,微調整をせずに実環境に効果的に移行できるポリシーを学習するための堅牢なILアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-12T07:04:06Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
観察からの模倣学習は、人間の学習と同様の方法で政策学習を記述する。
本稿では,解釈可能な収束度と性能測定値とともに,非逆学習型観測手法を提案する。
論文 参考訳(メタデータ) (2022-02-09T08:38:50Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
確率的発散の選択における変動が、より高性能なILOアルゴリズムをもたらす可能性について検討する。
本稿では,提案する$f$-divergence最小化フレームワークの課題を軽減するために,逆模倣学習のための再パラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:04:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。