論文の概要: Meta Learning in the Continuous Time Limit
- arxiv url: http://arxiv.org/abs/2006.10921v2
- Date: Wed, 8 Jul 2020 01:26:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 03:39:22.750708
- Title: Meta Learning in the Continuous Time Limit
- Title(参考訳): 連続時間限におけるメタ学習
- Authors: Ruitu Xu, Lin Chen, Amin Karbasi
- Abstract要約: モデルAメタラーニング(MAML)の学習力学の基礎となる常微分方程式(ODE)を確立する。
本稿では,既存のMAMLトレーニング手法に関連する計算負担を大幅に軽減するBI-MAMLトレーニングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 36.23467808322093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we establish the ordinary differential equation (ODE) that
underlies the training dynamics of Model-Agnostic Meta-Learning (MAML). Our
continuous-time limit view of the process eliminates the influence of the
manually chosen step size of gradient descent and includes the existing
gradient descent training algorithm as a special case that results from a
specific discretization. We show that the MAML ODE enjoys a linear convergence
rate to an approximate stationary point of the MAML loss function for strongly
convex task losses, even when the corresponding MAML loss is non-convex.
Moreover, through the analysis of the MAML ODE, we propose a new BI-MAML
training algorithm that significantly reduces the computational burden
associated with existing MAML training methods. To complement our theoretical
findings, we perform empirical experiments to showcase the superiority of our
proposed methods with respect to the existing work.
- Abstract(参考訳): 本稿では,モデル非依存メタラーニング(MAML)の学習力学の基礎となる常微分方程式(ODE)を確立する。
この過程の連続時間極限ビューは,手動で選択した勾配降下のステップサイズの影響を取り除き,特定の離散化から生じる特別な場合として,既存の勾配降下訓練アルゴリズムを含む。
我々は,MAML損失が非凸である場合でも,MAML損失関数の近似定常点に対する線形収束率を強く凸することを示した。
さらに,MAML ODE の解析を通じて,既存のMAML トレーニング手法に付随する計算負担を大幅に軽減する BI-MAML トレーニングアルゴリズムを提案する。
理論的な知見を補完するため,提案手法の既存研究に対する優位性を示す実証実験を行った。
関連論文リスト
- Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - On Training Implicit Meta-Learning With Applications to Inductive
Weighing in Consistency Regularization [0.0]
暗黙的メタラーニング(IML)では、特にヘシアン(Hessian)の計算に2ドル(約2,200円)の勾配を必要とする。
ヘッセンの様々な近似が提案されたが、計算コスト、安定性、解の一般化、推定精度の体系的な比較はほとんど見過ごされてしまった。
本稿では,ドメイン固有の特徴を抽出するために,信頼ネットワークをトレーニングすることで,有用画像のアップウェイトや配布外サンプルのダウンウェイトを学べることを示す。
論文 参考訳(メタデータ) (2023-10-28T15:50:03Z) - Provable Generalization of Overparameterized Meta-learning Trained with
SGD [62.892930625034374]
我々は、広く使われているメタラーニング手法、モデル非依存メタラーニング(MAML)の一般化について研究する。
我々は、MAMLの過大なリスクに対して、上界と下界の両方を提供し、SGDダイナミクスがこれらの一般化境界にどのように影響するかをキャプチャする。
理論的知見は実験によってさらに検証される。
論文 参考訳(メタデータ) (2022-06-18T07:22:57Z) - Adaptive neighborhood Metric learning [184.95321334661898]
適応的近傍距離距離学習(ANML)という新しい距離距離距離距離距離距離学習アルゴリズムを提案する。
ANMLは線形埋め込みと深層埋め込みの両方を学ぶのに使うことができる。
本手法で提案するemphlog-exp平均関数は,深層学習手法をレビューするための新たな視点を与える。
論文 参考訳(メタデータ) (2022-01-20T17:26:37Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z) - B-SMALL: A Bayesian Neural Network approach to Sparse Model-Agnostic
Meta-Learning [2.9189409618561966]
本稿では,b-smallアルゴリズムと呼ぶベイズ型ニューラルネットワークに基づくmamlアルゴリズムを提案する。
分類タスクと回帰タスクを用いたB-MAMLのパフォーマンスを実証し、MDLを用いたスパーシファイングBNNのトレーニングがモデルのパラメータフットプリントを実際に改善することを強調した。
論文 参考訳(メタデータ) (2021-01-01T09:19:48Z) - How Does the Task Landscape Affect MAML Performance? [42.27488241647739]
モデル非依存メタラーニング(MAML)は非適応学習(NAL)よりも最適化が難しいことを示す。
簡単なタスクと難しいタスクの混合からなる線形回帰設定でこの問題を解析的に解決する。
また、これらの知見が2層ニューラルネットワークに適用可能であることを示唆する数値的および解析的な結果も提示する。
論文 参考訳(メタデータ) (2020-10-27T23:54:44Z) - Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning [63.64636047748605]
一般的なマルチステップMAMLアルゴリズムに対して収束保証を提供するための新しい理論フレームワークを開発する。
特に,本研究の結果は,収束を保証するためには,内部段階のステップを逆比例して$N$の内段ステップを選択する必要があることを示唆している。
論文 参考訳(メタデータ) (2020-02-18T19:17:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。