論文の概要: CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2407.20454v1
- Date: Mon, 29 Jul 2024 23:18:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 18:38:42.407787
- Title: CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models
- Title(参考訳): CoMMIT:マルチモーダル大規模言語モデルのための協調型インストラクションチューニング
- Authors: Junda Wu, Xintong Li, Tong Yu, Yu Wang, Xiang Chen, Jiuxiang Gu, Lina Yao, Jingbo Shang, Julian McAuley,
- Abstract要約: 本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
- 参考スコア(独自算出の注目度): 68.64605538559312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning in multimodal large language models (MLLMs) aims to smoothly integrate a backbone LLM with a pre-trained feature encoder for downstream tasks. The major challenge is how to efficiently find the synergy through cooperative learning where LLMs adapt their reasoning abilities in downstream tasks while feature encoders adjust their encoding to provide more relevant modal information. In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives, where we find unbalanced learning between the two components, i.e., the feature encoder and the LLM, can cause diminishing learning gradients that slow the model convergence and often lead to sub-optimal results due to insufficient learning. Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance, based on which we further design a dynamic learning scheduler that better coordinates the learning. In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs considering the learning state of each model component, which potentially prevents each component from gradient diminishing and enables a more accurate estimation of the learning balance coefficient. We conduct experiments with multiple LLM backbones and feature encoders, where our techniques are model-agnostic and can be generically integrated with various MLLM backbones. Experiment results on multiple downstream tasks and modalities in vision and audio, demonstrate the proposed method's better efficiency and effectiveness in MLLM instruction tuning.
- Abstract(参考訳): マルチモーダル大言語モデル(MLLM)における命令チューニングは、下流タスクのための事前訓練された機能エンコーダとバックボーンLLMを円滑に統合することを目的としている。
主な課題は、LLMが下流タスクの推論能力に適応し、機能エンコーダがより関連性の高いモーダル情報を提供するようにエンコーディングを調整する、協調学習を通じてシナジーを効率的に見つける方法である。
本稿では,MLLMの命令チューニングを理論的・経験的両面から解析し,特徴エンコーダとLLMという2つのコンポーネント間の不均衡学習が,モデルの収束を遅くする学習勾配の低下を招き,学習不足による準最適結果につながる可能性があることを示す。
そこで本研究では,学習バランスを定量的に評価する尺度を提案し,学習のコーディネートを改善する動的学習スケジューラをさらに設計する。
さらに、各モデルコンポーネントの学習状態を考慮したMLLMの生成分布の更新を促進する補助的損失正規化手法を導入し、各コンポーネントの勾配低下を防止し、学習バランス係数をより正確に推定できるようにする。
複数のLLMバックボーンと特徴エンコーダを用いて実験を行い、モデルに依存しず、様々なMLLMバックボーンと汎用的に統合することができる。
マルチダウンストリームタスクと視覚および音声のモーダル性に関する実験結果から,MLLM 命令チューニングにおける提案手法の有効性と有効性を示す。
関連論文リスト
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning [35.446870721902904]
エージェントとしてデプロイされる大規模言語モデル(LLM)は、必要な手動のエンゲージメントを最小限に抑えながら、複数のステップでユーザ指定タスクを解決する。
コード合成の領域における実行フィードバックを活用するためのモデル学習のためのエンドツーエンド強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T23:25:17Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。