Strong mechanical squeezing in a standard optomechanical system by pump
modulation
- URL: http://arxiv.org/abs/2006.10960v1
- Date: Fri, 19 Jun 2020 05:00:39 GMT
- Title: Strong mechanical squeezing in a standard optomechanical system by pump
modulation
- Authors: Cheng-Hua Bai, Dong-Yang Wang, Shou Zhang, Shutian Liu, and Hong-Fu
Wang
- Abstract summary: We propose a simple yet surprisingly effective mechanical squeezing scheme in a standard optomechanical system.
By merely introducing a specific kind of periodic modulation into the single-tone driving field to cool down the mechanical Bogoliubov mode, the far beyond 3-dB strong mechanical squeezing can be engineered.
- Score: 0.4893345190925178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Being beneficial for the amplitude modulation of the pump laser, we propose a
simple yet surprisingly effective mechanical squeezing scheme in a standard
optomechanical system. By merely introducing a specific kind of periodic
modulation into the single-tone driving field to cool down the mechanical
Bogoliubov mode, the far beyond 3-dB strong mechanical squeezing can be
engineered without requiring any additional techniques. Specifically, we find
that the amount of squeezing is not simply dependent on the order of magnitude
of the effective optomechanical coupling but strongly on the ratio of sideband
strengths for it. To maximize the mechanical squeezing, we numerically and
analytically optimize this ratio in the steady-state regime, respectively. The
mechanical squeezing engineered in our scheme also has strong robustness and
can survive at a high bath temperature. Compared with previous schemes based on
the two-tone pump technique, our scheme involves fewer external control laser
source and can be extended to other quantum systems to achieve strong squeezing
effect.
Related papers
- Optimizing Entanglement in Nanomechanical Resonators through Quantum Squeezing and Parametric Amplification [0.0]
We propose a scheme that optimize entanglement in nanomechanical resonators through quantum state transfer of squeezed fields assisted by radiation pressure.
The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Generation of strong mechanical squeezing through the joint effect of two-tone driving and parametric pumping [0.0]
We propose an innovative scheme to efficiently prepare strong mechanical squeezing through utilizing the synergistic mechanism of two-tone driving and parametric pumping.
Our project offers a versatile and efficient approach for generating strong mechanical squeezing across a wide range of conditions.
arXiv Detail & Related papers (2024-09-20T08:31:50Z) - Optimized mechanical quadrature squeezing beyond the 3-dB limit via a gradient-descent algorithm [3.182901197671368]
We propose a reliable scheme for generating mechanical quadrature squeezing in a typical cavity optomechanical system.
We realize strong quadrature squeezing in a mechanical resonator that exceeds the 3-dB steady-state limit.
This paper will promote the application of optimal quantum control in quantum optics and quantum information science.
arXiv Detail & Related papers (2024-04-21T07:22:09Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Mechanical Squeezing via Detuning-Switched Driving [0.09558392439655011]
We propose a detuning-switched method that can rapidly generate strong and stationary mechanical squeezing.
The pulsed driving can dynamically transpose the optomechanical coupling into a linear optical force and maintain an effective mechanical frequency.
We show the obtained strong mechanical squeezing can be frozen by increasing the pulse intervals, leading to stationary mechanical squeezing with a fixed squeezing angle.
arXiv Detail & Related papers (2023-03-08T10:04:39Z) - Mechanical Squeezing in Quadratically-coupled Optomechanical Systems [0.0]
We demonstrate the generation of a strong mechanical squeezing in a dissipative optomechanical system.
Even for a thermal occupancy of 104 phonons, mechanical squeezing beyond 3 dB and a strong optomechanical entanglement is observed.
arXiv Detail & Related papers (2022-10-02T13:13:37Z) - Quantum manipulation of a two-level mechanical system [19.444636864515726]
We consider a nonlinearly coupled electromechanical system, and develop a quantitative theory for two-phonon cooling.
In the presence of two-phonon cooling, the mechanical Hilbert space is effectively reduced to its ground and first excited states.
We propose a scheme for performing arbitrary Bloch sphere rotations, and derive the fidelity in the specific case of a $pi$-pulse.
arXiv Detail & Related papers (2021-01-05T19:34:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.