Cross-denoising Network against Corrupted Labels in Medical Image
Segmentation with Domain Shift
- URL: http://arxiv.org/abs/2006.10990v1
- Date: Fri, 19 Jun 2020 07:35:25 GMT
- Title: Cross-denoising Network against Corrupted Labels in Medical Image
Segmentation with Domain Shift
- Authors: Qinming Zhang, Luyan Liu, Kai Ma, Cheng Zhuo, Yefeng Zheng
- Abstract summary: We propose a novel cross-denoising framework using two peer networks to address domain shift and corrupted label problems.
Specifically, each network performs as a mentor, mutually supervised to learn from reliable samples selected by the peer network to combat with corrupted labels.
In addition, a noise-tolerant loss is proposed to encourage the network to capture the key location and filter the discrepancy under various noise-contaminant labels.
- Score: 28.940670115918728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks (DCNNs) have contributed many
breakthroughs in segmentation tasks, especially in the field of medical
imaging. However, \textit{domain shift} and \textit{corrupted annotations},
which are two common problems in medical imaging, dramatically degrade the
performance of DCNNs in practice. In this paper, we propose a novel robust
cross-denoising framework using two peer networks to address domain shift and
corrupted label problems with a peer-review strategy. Specifically, each
network performs as a mentor, mutually supervised to learn from reliable
samples selected by the peer network to combat with corrupted labels. In
addition, a noise-tolerant loss is proposed to encourage the network to capture
the key location and filter the discrepancy under various noise-contaminant
labels. To further reduce the accumulated error, we introduce a
class-imbalanced cross learning using most confident predictions at the
class-level. Experimental results on REFUGE and Drishti-GS datasets for optic
disc (OD) and optic cup (OC) segmentation demonstrate the superior performance
of our proposed approach to the state-of-the-art methods.
Related papers
- Population Graph Cross-Network Node Classification for Autism Detection
Across Sample Groups [10.699937593876669]
Cross-network node classification extends GNN techniques to account for domain drift.
We present OTGCN, a powerful, novel approach to cross-network node classification.
We demonstrate the effectiveness of this approach at classifying Autism Spectrum Disorder subjects.
arXiv Detail & Related papers (2024-01-10T18:04:12Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
Cross-network node classification (CNNC) aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels.
We propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation.
arXiv Detail & Related papers (2023-08-31T05:26:08Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
Semi-supervised medical image segmentation offers a promising solution for large-scale medical image analysis.
This paper proposes a cross-supervised learning framework based on dual classifiers (DC-Net)
Experiments on LA and Pancreas-CT dataset illustrate that DC-Net outperforms other state-of-the-art methods for semi-supervised segmentation.
arXiv Detail & Related papers (2023-05-25T16:23:39Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN [3.3909577600092122]
We propose a new Cycle-Consistent Generative Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image denoiseing.
Our model consists of two Cycle-GAN networks with imporved generator, descriminator and wasserstein loss to achieve good training stability and better performance.
arXiv Detail & Related papers (2022-05-02T07:38:19Z) - Synergistic Network Learning and Label Correction for Noise-robust Image
Classification [28.27739181560233]
Deep Neural Networks (DNNs) tend to overfit training label noise, resulting in poorer model performance in practice.
We propose a robust label correction framework combining the ideas of small loss selection and noise correction.
We demonstrate our method on both synthetic and real-world datasets with different noise types and rates.
arXiv Detail & Related papers (2022-02-27T23:06:31Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning [66.36706284671291]
We propose a data-driven framework supervised by only image-level labels to support unbiased lesion localisation.
The framework can explicitly separate potential lesions from original images, with the help of a generative adversarial network and a lesion-specific decoder.
arXiv Detail & Related papers (2021-03-01T06:05:49Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - RAR-U-Net: a Residual Encoder to Attention Decoder by Residual
Connections Framework for Spine Segmentation under Noisy Labels [9.81466618834274]
We propose a new and efficient method for medical image segmentation under noisy labels.
The method operates under a deep learning paradigm, incorporating four novel contributions.
Experimental results are illustrated on a publicly available benchmark database of spine CTs.
arXiv Detail & Related papers (2020-09-27T15:32:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.