Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN
- URL: http://arxiv.org/abs/2205.00698v1
- Date: Mon, 2 May 2022 07:38:19 GMT
- Title: Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN
- Authors: Jie Du, Xujian Yang, Kecheng Jin, Xuanzheng Qi, Hu Chen
- Abstract summary: We propose a new Cycle-Consistent Generative Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image denoiseing.
Our model consists of two Cycle-GAN networks with imporved generator, descriminator and wasserstein loss to achieve good training stability and better performance.
- Score: 3.3909577600092122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nosie is an important cause of low quality Optical coherence tomography (OCT)
image. The neural network model based on Convolutional neural networks(CNNs)
has demonstrated its excellent performance in image denoising. However, OCT
image denoising still faces great challenges because many previous neural
network algorithms required a large number of labeled data, which might cost
much time or is expensive. Besides, these CNN-based algorithms need numerous
parameters and good tuning techniques, which is hardware resources consuming.
To solved above problems, We proposed a new Cycle-Consistent Generative
Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image
denoiseing, which has remarkable performance with less unlabeled traning data.
Our model consists of two Cycle-GAN networks with imporved generator,
descriminator and wasserstein loss to achieve good training stability and
better performance. Using image merge technique between two Cycle-GAN networks,
our model could obtain more detailed information and hence better training
effect. The effectiveness and generality of our proposed network has been
proved via ablation experiments and comparative experiments. Compared with
other state-of-the-art methods, our unsupervised method obtains best subjective
visual effect and higher evaluation objective indicators.
Related papers
- Image Blind Denoising Using Dual Convolutional Neural Network with Skip
Connection [2.9689285167236603]
We propose a novel dual convolutional blind denoising network with skip connection (DCBDNet)
The proposed DCBDNet consists of a noise estimation network and a dual convolutional neural network (CNN)
arXiv Detail & Related papers (2023-04-04T08:21:46Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
Much research has been conducted on classifying cracks from image data using deep convolutional neural networks.
This paper will investigate the influence of image noise on network accuracy.
AlexNet was selected as the most efficient model based on the proposed index.
arXiv Detail & Related papers (2021-11-03T09:08:54Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Learning a Model-Driven Variational Network for Deformable Image
Registration [89.9830129923847]
VR-Net is a novel cascaded variational network for unsupervised deformable image registration.
It outperforms state-of-the-art deep learning methods on registration accuracy.
It maintains the fast inference speed of deep learning and the data-efficiency of variational model.
arXiv Detail & Related papers (2021-05-25T21:37:37Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
arXiv Detail & Related papers (2021-01-19T16:37:57Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - EDCNN: Edge enhancement-based Densely Connected Network with Compound
Loss for Low-Dose CT Denoising [27.86840312836051]
We propose the Edge enhancement based Densely connected Convolutional Neural Network (EDCNN)
We construct a model with dense connections to fuse the extracted edge information and realize end-to-end image denoising.
Compared with the existing low-dose CT image denoising algorithms, our proposed model has a better performance in preserving details and suppressing noise.
arXiv Detail & Related papers (2020-10-30T23:12:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.