Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning
- URL: http://arxiv.org/abs/2103.00780v1
- Date: Mon, 1 Mar 2021 06:05:49 GMT
- Title: Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning
- Authors: Yang Yang, Jiancong Chen, Ruixuan Wang, Ting Ma, Lingwei Wang, Jie
Chen, Wei-Shi Zheng, Tong Zhang
- Abstract summary: We propose a data-driven framework supervised by only image-level labels to support unbiased lesion localisation.
The framework can explicitly separate potential lesions from original images, with the help of a generative adversarial network and a lesion-specific decoder.
- Score: 66.36706284671291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite tremendous efforts, it is very challenging to generate a robust model
to assist in the accurate quantification assessment of COVID-19 on chest CT
images. Due to the nature of blurred boundaries, the supervised segmentation
methods usually suffer from annotation biases. To support unbiased lesion
localisation and to minimise the labeling costs, we propose a data-driven
framework supervised by only image-level labels. The framework can explicitly
separate potential lesions from original images, with the help of a generative
adversarial network and a lesion-specific decoder. Experiments on two COVID-19
datasets demonstrate the effectiveness of the proposed framework and its
superior performance to several existing methods.
Related papers
- Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations [49.33388736227072]
We propose a semi- and weakly-supervised learning framework for mass segmentation.
We use limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance.
Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-03-14T12:05:25Z) - A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate
Detection [12.669734891001667]
Diabetic retinopathy (DR) is a leading global cause of blindness.
Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss.
We present a novel supervised contrastive learning framework to optimize hard exudate segmentation.
arXiv Detail & Related papers (2023-02-22T17:39:00Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Severity Quantification and Lesion Localization of COVID-19 on CXR using
Vision Transformer [25.144248675578286]
Under the global pandemic of COVID-19, building an automated framework that quantifies the severity of COVID-19 has become increasingly important.
We propose a novel Vision Transformer tailored for both quantification of the severity and clinically applicable localization of the COVID-19 related lesions.
Our model is trained in a weakly-supervised manner to generate the full probability maps from weak array-based labels.
arXiv Detail & Related papers (2021-03-12T03:17:19Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
We propose a new weakly-supervised lesions transfer framework, which can explore transferable domain-invariant knowledge across different datasets.
A Wasserstein quantified transferability framework is developed to highlight widerange transferable contextual dependencies.
A novel self-supervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easy-to-transfer target samples.
arXiv Detail & Related papers (2020-12-08T02:26:03Z) - Label-Free Segmentation of COVID-19 Lesions in Lung CT [17.639558085838583]
We present a label-free approach for segmenting COVID-19 lesions in CT via pixel-level anomaly modeling.
Our modeling is inspired by the observation that the parts of tracheae and vessels, which lay in the high-intensity range where lesions belong, exhibit strong patterns.
Our experiments on three different datasets validate the effectiveness of NormNet.
arXiv Detail & Related papers (2020-09-08T12:38:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.